University of Oregon

- Bernardo Blanco-Sánchez
- Aurélie Clément
- Javier Fierro
- John Postlethwait
- Jennifer Phillips
- Alexandra Talafuss
- Sabrina Toro
- Phillip Washbourne
- Jeremy Wegner

Cologne Center for Genomics

- Gudrun Nürnberg
- Peter Nürnberg

Human Genetics Hamburg

Ellen Schäfer

Baylor College of Medicine

- Hugo Bellen
- Shinya Yamamoto
- Michael Wangler

University of Tübingen

- Antje Bernd
- Eberhart Zrenner

Inserm Montpelier

- Mireille Claustres
- Anne-Francoise Roux

McGill University Health Centre Montreal

- Robert Koenekoop
- Irma Lopez

University Hospital Cologne

- Thomas Benzing
- Hanno Bolz
- Claudia Dafinger
- Inge Ebermann
- Max Liebau
- Rebecca Ruland
- Bernhard Schermer
- Michaela Thoenes

VisionForACure.com

Sponsored by the Office of the Director National Institutes of Health,
the National Human Genome Research Institute,
the National Institute of Child Health & Development,
the National Institute on Deafness & Other Communication Disorders,
the National Eye Institute,

Case study 1: Positive results validate candidate genes

Case study 2: Negative results reveal incorrect diagnoses

Mind the gaps

Undiagnosed Diseases Network

Case study 1: Positive results validate candidate genes

Usher syndrome gene discovery

Case study 2: Negative results reveal incorrect diagnoses

Mind the gaps

Undiagnosed Diseases Network

Usher syndrome - the leading cause of deafblindness

- Prevalence ≈ 1 per 6,000 births in the US (more common than ALS or Huntington's Disease)
- Congenital deafness (~4% of deaf have Usher)
 Sensorineural hearing loss
 Vestibular dysfunction
- Retinitis pigmentosa
 Loss of rod photoreceptors
 Progressive tunnel vision as cones die

Multiple Usher genes with multiple functions

Type	Human	Protein: potential function
USH1B	MY07A	MyosinV11A: motor activity
USH1C	USH1C	Harmonin: scaffold
USH1D	CAD23	Cadherin: calcium dependent adhesion
USH1E	-	Unknown
USH1F	PCDH15	Protocadherin15: adhesion, signaling
USH1G	USH1G	SANS: membrane associated scaffold
USH1H	-	Unknown
USH1J	CIB2	Calcium and integrin binding protein
USH1K	-	Unknown
USH2A	USH2A	Usherin: Laminin-like transmembrane protein
USH2C	GPR98	Vlgr1: G-protein coupled receptor, signaling
USH2D	CIP98	Whirlin: scaffold
USH3A	CLRN1	Clarin1: 4-pass transmembrane protein
USH3B	HARS	Histidyl-tRNA Synthetase

Genetic counseling is important for Usher patients

Gene discovery is important for Usher patients

Exome sequencing of undiagnosed patients identifies mutations in PDZD7, a gene of unknown function

Zebrafish Pdzd7a is localized with other Usher proteins

Pdzd7 + ac-tubulin

Stereocilia are defective after pdzd7a knockdown

Control

pdzd7a MO

PDZD7 mutations are heterozygous in patients with known Usher gene mutations

pdzd7a interacts with ush2a & gpr98 in photoreceptor cell death

PDZD7 binds to USH2A & GRP98 proteins

HEK293T cells

PDZD7 forms a quaternary complex of USH 2 proteins

Case study 1: Positive results validate candidate genes

Usher syndrome gene discovery

PDZD7 causes disease

Case study 1: Positive results validate candidate genes

Usher syndrome gene discovery

PDZD7 causes disease

Where are the missing homozygous and compound heterozygous patients?

- embryonic lethal? (model organism data suggest not)
- patient pool too small?
 - limited access to patient data?
 - lack of communication (or sharing) among clinicians?

Case study 1: Positive results validate candidate genes

Usher syndrome gene discovery

Case study 2: Negative results reveal incorrect diagnoses

Joubert syndrome

Mind the gaps

Undiagnosed Diseases Network

Consanguineous family with deafness

Mapping homozygosity by descent identifies no good candidates

Whole exome sequencing for homozygous SNPs identifies mutation in *AHI1*, a gene responsible for Joubert syndrome

Joubert syndrome - a severe ciliopathy disease

- Underdevelopment of the cerebellum and brainstem*
- Impaired intellectual development, seizures
- Retinitis pigmentosa
- Developmental abnormalities
- Kidney and liver abnormalities

Homozygous patients have normal CNS MRIs

Nonsense mutation truncates the protein-protein interaction domain of *AHI1*

Targeting upstream in zebrafish gene blocks expression

Upstream targeting produces strong ciliopathy phenotype

3' targeting truncates the protein

Truncated protein has no apparent phenotype

Nonsense AHI1 mutation is not linked to deafness

Case study 1: Positive results validate candidate genes

Usher syndrome gene discovery

Case study 2: Negative results reveal incorrect diagnoses

Joubert syndrome

Mind the gaps (perspective from the bench)

- Barriers to accessing patient data
 - Sociological: clinical vs basic research attitudes
 - Limited access to clinical records: de-identified vs IRB
- Limited patient data: horde vs share variant & phenotypic data

Undiagnosed Diseases Network

Seven clinical sites, a coordinating center, two DNA sequencing cores, a metabolomics core, a model organisms screening center, and a central biorepository

Case study 1: Positive results validate candidate genes

Usher syndrome gene discovery

Case study 2: Negative results reveal incorrect diagnoses

Joubert syndrome

Mind the gaps (perspective from the bench)

- Barriers to accessing patient data
 - Sociological: clinical vs basic research attitudes
 - Limited access to clinical records: de-identified vs IRB
- Limited patient data: horde vs share variant & phenotypic data

Undiagnosed Diseases Network

University of Oregon

- Bernardo Blanco-Sánchez
- Aurélie Clément
- Javier Fierro
- John Postlethwait
- Jennifer Phillips
- Alexandra Talafuss
- Sabrina Toro
- Phillip Washbourne
- Jeremy Wegner

Cologne Center for Genomics

- Gudrun Nürnberg
- Peter Nürnberg

Human Genetics Hamburg

Ellen Schäfer

Baylor College of Medicine

- Hugo Bellen
- Shinya Yamamoto
- Michael Wangler

University of Tübingen

- Antje Bernd
- Eberhart Zrenner

Inserm Montpelier

- Mireille Claustres
- Anne-Francoise Roux

McGill University Health Centre Montreal

- Robert Koenekoop
- Irma Lopez

University Hospital Cologne

- Thomas Benzing
- Hanno Bolz
- Claudia Dafinger
- Inge Ebermann
- Max Liebau
- Rebecca Ruland
- Bernhard Schermer
- Michaela Thoenes

VisionForACure.com

Sponsored by the Office of the Director National Institutes of Health,
the National Human Genome Research Institute,
the National Institute of Child Health & Development,
the National Institute on Deafness & Other Communication Disorders,
the National Eye Institute,

the Usher 1F Collaborative, and the Megan and Vision for a Cure Foundations