A Clinical Perspective on the Need for Integration

Gail E. Herman, MD, PhD 4/19/16

Disclosures

 Past-President of the American College of Medical Genetics and Genomics (ACMG)

• PI on DOD funded grant on autism

 Chair of the external advisory board for the NIH funded Mouse Genome Informatics database, The Jackson Laboratory

Precision Medicine

- Possible through disruptive technology of NGS and advances in computational biology
- Clinical utility currently
 - Diagnosis of rare Mendelian disorders
 - Cancer diagnosis and personalized therapeutics
- Future expected clinical utility
 - Pharmacogenomics
 - Multifactorial disorders

Clinical Exome Sequencing

- High diagnostic yield (~25-40%)
- Importance of studying trios higher yields in trios of ~40% vs ~25% if study DNA from proband only (peds)
- VUS and actionable secondary findings are common (the latter in ~1-5% of cases depending on lab)

Secondary Findings

Actionable secondary findings – damaging variants in disease genes unrelated to the reason testing was sent for which there is significant morbidity and/or mortality and where early dx can ameliorate or prevent the disease

Secondary Findings in Clinical Sequencing

- Recommendations of ACMG & President's Commission on Bioethics (2013) to search for and report them
- ACMG "Minimum list" of 56 actionable genes and specific mutations
 - Hereditary cancer genes, Marfan and related syndromes, inherited cardiomyopathies & arrhythmias, familial hypercholesterolemia, malignant hyperthermia
- Pathogenic variants in this gene list should be reported regardless of indication for clinical exome sequencing
 - Additional genes may be analyzed
 - Minimal list should be reported regardless of patient age
 - Patients/parents may "opt out" at time of consent

Secondary Findings

- Labs should seek and report only certain types of variants (pathogenic, likely pathogenic)
 - Low prior likelihood of disease for secondary findings
 - Labs should list quality of coverage/data which may be lower than for diagnostic genes
- Clinician/team has responsibility to provide appropriate pre- and post-test counseling [should include qualified genetics professional(s)]
- List should be refined and updated at least annually
- No consensus or recommendations on reporting of 2ary findings in research WES/WGS sequencing

Who are the Best Candidates for Clinical Exome Sequencing?

- Specific phenotypes/disorders should lead to specific genetic testing (single gene, gene panel)
 - May be less coverage of specific genes/regions on WES
 - Longer TAT; ?higher cost; lower % reimbursement
- Testing prior to exome (peds)
 - Microarray analysis MCA, intellectual disability (IDD), severe szs, severe ASD (low IQ, dysmorphic); may uncover consanguinity
 - Low cost screening tests where appropriate

Utility of a Genetic Diagnosis

- Prevents additional unnecessary testing
- May help predict future medical complications
- May help tailor specific interventions
- May help predict function as an adult
- Will often provide better guidance concerning recurrence risks
- Will occasionally permit specific medical therapies that may significantly improve the outcome

Models for Clinical Genomics - NCH

- All exome sequencing must be ordered or approved by a clinical geneticist
- Referrals to Genetics
 - Ongoing from multiple services, outside providers
- Case conference started with Neurology (9/14); GI (12/15); Endocrine (4/16)
- Genomics Clinic, planned 2016

Clinical Exome Sequencing Results at NCH from 10/29/12 – 8/3/15

Exomes Completed (Baylor-Miraca)	160
Cause Identified (Pathogenic variant found related to disease)	71 (44%)
Likely Cause Identified (awaiting confirmation)	0
Questionable Results (VUS, pathogenicity unclear)	2
Actionable Secondary Findings (BRCA1, MEN I, BRCA2, KCNQ1)	4 (2.5%)

Implications for Management on 1st 100 Cases

- 19/41 (46%) with positive result had change in management beyond reproductive risk
 - 16/41 change in surveillance, including increased cancer risk (DKC)
 - 3/41 specific rx such as medication, diet (Lesch-Nyhan, AR disorder of creatine synthesis, novel sz/movement disorder)
- 20/41 clearly de novo dramatic reduction in recurrence risk (?25% to <1%)
- 3 novel genes identified (PURA, VARS2, NR1H4 that encodes FXR)

Trends in Clinical Sequencing

- Expansion to carrier and population screening
- Move from gene identification to validation of variant pathogenicity; Need rapid, robust tools to validate potential disease-causing variants, particularly missense variants
- Move toward WGS, with assessment of chr rearrangements included in analysis; increased complexity of assessing noncoding variants

- Standardized process for classifying variants
- Work group of Lab Directors and Clinicians from ACMG, AMP, CAP
- Classification Terminology pathogenic, likely pathogenic, VUS, likely benign, and benign

An Example

- 18 mo with progressive epilepsy; speech delay
- Seizure panel no pathogenic variants;
 VUS KCNQ3 c.1360C>T, p.Pro454Ser
- Gene causes AD seizure disorders benign neonatal (BFNS), later onset szs
- 3 publications on this variant suggestive functional data
 - Eric Zmuda, Fellow, NCH Cytogenetics and Molecular Genetics Laboratory

Review of Evidence for KCNQ3 c.1720C>T (p.Phe574Ser)

• Popi	ulation fre	equency	– Too hi	ah (?1:250 vs	Feature	rs74582884	
-	oulation frequency – Too high (?1:250 vs se Control Study – Enriched in disease				Location	8:132134369-132134369	
	nservation- Highly Conserved				Allele	А	
					Consequence	missense_variant	
 Func 	Functional Predictions – Conflicting			icting	SYMBOL	KCNQ3	
			Gene	ENSG00000184156			
					Feature	ENST00000388996	
B chr8:	133215793	133215794	133215795	133215796 l 1332157	BIOTYPE	protein_coding	
	T	C	C	A G	EXON	13/15	
				Chromosome B	CDS_position	1720	
				8q24.22	Protein_position	574	
Market State				UCSC Gene	Amino_acids	P/S	
KCNQ3 KCNQ3	_	G		P	SIFT	tolerated(0.05)	
nerres -				Multiz Alignm	PolyPhen	probably_damaging(1)	
Human		Ģ		p	GERP++	Conserved	
Rhesus Mouse		G		p	phastCons7way_vertebrate	Conserved	
Dog Elephant		G		P	phyloP7way_vertebrate	Conserved	
Opossum Platypus		G		PP	Condel	deleterious(0.975)	
Chicken Lizard		G		P	MetaLR_pred	Deleterious	
X_tropicalis Stickleback		Ğ		P	MetaSVM_pred	Deleterious	
JUCNEDACK		0		T	LRT_pred	Deleterious	
					PROVEAN_pred	Neutral	
					FATHMM_pred	Deleterious	

Review of Evidence for KCNQ3 c.1720C>T (p.Phe574Ser)

- ClinVar– Conflicting Interpretations
- Plug info into ACMG Checklist (modified online tool from ClinGen)....

As	sertion and evi	dence details			Go to: 🖂				
Clinical assertions Summary evidence Supporting observations			ations	ClinVar					
	Germline								
							Filter:		
	Clinical significance (Last evaluated)	Review status (Assertion method)	Collection method	Condition(s) (Mode of inheritance)	Origin	Citations	Submitter - Study name (Last submitted)	Submission accession	
	Benign (Jun 3, 2014)	criteria provided, single submitter (<u>EGL Classification</u> <u>Definitions</u>)	clinical testing	not specified [<u>MedGen]</u>	germline	PubMed (3) [See all records that cite these PMIDs]	Emory Genetics Laboratory (Jun 9, 2015)	SCV000113015.4	
	Uncertain significance (Jun 11, 2015)	criteria provided, single submitter (<u>ACMG Guidelines,</u> <u>2015</u>)	clinical testing	not specified [MedGen]	germline		Genetic Services Laboratory, University of Chicago (Sep 15, 2015)	SCV000247669.1	
	Pathogenic (Apr 27, 2010)	no assertion criteria provided	literature only	Benign familial neonatal seizures 2 [MedGen OMIM]	not provided	PubMed (1) [See all records that cite this PMID]	<u>GeneReviews</u> (Jan 8, 2013)	SCV000041085.1	

Review of Evidence for KCNQ3 c.1720C>T (p.Phe574Ser)

A	ACMG Pat	hogenic Checklist		June 2015		Interactive Tool Developed by Lisa Sussv	wein, Isusswein@genedx.com,	May 2015; modified	
S	Suggested C	assification:	Pathogenic	Instructions: Only the highest strengt	n category should be use	ed for rules interpreting the same l	lines of evidence.		
UN	No. <u>Criteria</u> 0 Very Str 2 Strong	Very Strong 1 Very Strong AND Strong 1 Strong Moderate 2 Moderate Supporting 1 Moderate and 1 Supporting 2 Supporting 2 Strong 1 Strong AND 3 Moderate 2 Moderate and 2 Supporting		equal to or greater than." Patient Name Image: Comparing and the second se					
	 PVS1 PS1 PS2 PS3 PS4 	ACIVIC Guidelines in the evidence for beingn Same amino acid chang De novo (both maternit Well established in vitr The prevalence of the variant of the o							
	PM1 PM2 PM3 PM4 PM5	Absent from controls (o For recessive disorders, In frame deletions/inse Novel missense change residue in highly analag	detected in trans with a pathogenic va rtions in a non-repeat region or stop-lo at an amino acid residue where a diffe ous protein(s) (e.g. KRAS/NRAS/HRAS)	ve) in large samplesets (>1000 individuals) riant iss variant rent missense change determined to be pa]			ogenic missense variant :	seen in same	
	PM6 PP1 PP2 PP3 PP4 PP5	Supporting Co-segregation with dis Missense variant in a ge Multiple lines of compu Patient's phenotype or	ene that has a low rate of benign misser utational evidence support a deleteriou family history is highly specific for a di ports variant as pathogenic but without	ers in a gene definitively known to cause t nse variation and where missense variants is effect on the gene or gene product (cons	are a common mechanis ervation, evolutionary,	splicing impact, etc.)	ments should be avoided	d, e.g. lab's use	

How Can Studies in Model Organisms Help?

- Demonstrate a role for protein in biological process
- (Help) demonstrate pathogenicity of a specific variant
- Examine gene-gene interactions
- Test potential therapies

Model of Choice Depends on Gene and Phenotype

- Yeast conserved metabolic pathways
- Zebrafish heart development, early nervous system development
- Xenopus channel studies in oocytes
- Mouse mammalian development (placenta, skeletal), learning & behavior
- Dog certain tumors, behavior
- Primate complex behaviors, language

Model of Choice Depends on Gene and Phenotype

- Yeast conserved metabolic pathways
- X-linked mouse models of cholesterol synthesis disorders

Model of Choice Depends on Gene and Phenotype

 Mouse – mammalian development (placenta), behavior

 Damaging de novo variants in novel genes in 2 human autism pts - ?likely pathogenic based on behavioral phenotypes in KO mice

Using Mouse Model Data to Prioritize and Characterize Genes with Unknown Clinical Significance

Joanne Berghout, PhD Outreach Coordinator Mouse Genome Informatics

16 October 2015

- www.ACMG.net/EDUCATION
- Online Learning