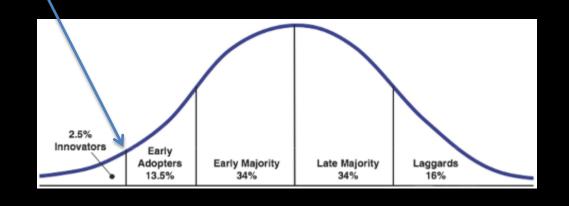


Speeding genomic medicine to benefit children & families


Stephen F. Kingsmore, MB, ChB, DSc, FRCPath,

President, Rady Children's Institute for Genomic Medicine, San Diego

Increased Adoption of Genomic Medicine will require investments in Implementation Science

Adoption of Genomic Medicine Status:

One Homogeneous Setting: Single Gene Diseases

- 22 Level III and IV NICUs;
 18,000 infants
- 25 PICUs; 12,000 children

Favorable Economics

Level II		Infants ≥32 wk/≥1500g with moderate problems; Ventilation <24 hours
Level III		+ Sustained life support + <32 wks/<1500 g/critical illness
Level IV	Regional NICU	+ Complex surgery + all pediatric subspecialties

2009 Charges for Level II-IV NICUs

• 14% of newborns

Gestational Age	Average Length of Stay (Days)	Average Hospital Charges (Dollars)	
All Admissions	13.2	\$76,164	
<32 weeks	46.2	\$280,811	
32-33 weeks	20.3	\$102,182	
34-36 weeks	9.8	\$51,083	
37-38 weeks	5.9	\$37,137	
39-41 weeks	4.9	\$29,771	
42+ weeks	6.5	\$47,282	

The Data

Neonatal Need for Genomic Medicine

- Leading cause of death in NICU, PICU, infants
- 8000 named diseases; ↑ by 20/month
- Delayed/no diagnosis:
 - Suboptimal outcomes
 - Failure to predict complications
 - Incorrect treatments
 - Prolonged stays
 - Suboptimal candidate selection for interventions: ECMO
 - Inability to choose palliative care track

A prospective evaluation of whole-exome sequencing as a firsttier molecular test in infants with suspected monogenic disorders Stark Z, et al. Genetics in Medicine 3/3/2016

80 infants in regional NICU with likely genetic disease (Melbourne, Australia)

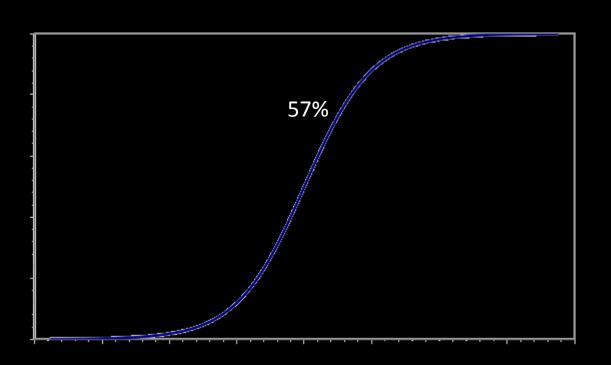
Molecular Diagnosis
But: Median time to
Dx 134 days

58% (46)

By exome sequencing

14% (11)
By standard methods

19% (15) Change in Rx Whole-genome sequencing for identification of Mendelian disorders in critically ill infants: a retrospective analysis of diagnostic and clinical findings Willig LK, et al. Science Trans. Med. April 2015


35 infants in regional NICU with likely genetic disease (Kansas City, MO)

Molecular Diagnosis But: Enrollment 26 days; Dx 23 days 57%(20)
By WGS

9%(3)
By standard methods

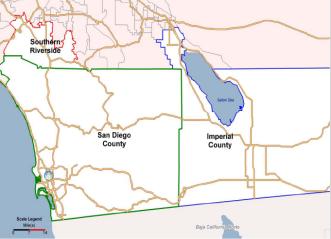
37%(13)
Change in Rx

Diagnostic Yield of WES/WGS

Acute Clinical Utility of Median Day 49 NICU/PICU Molecular Diagnosis

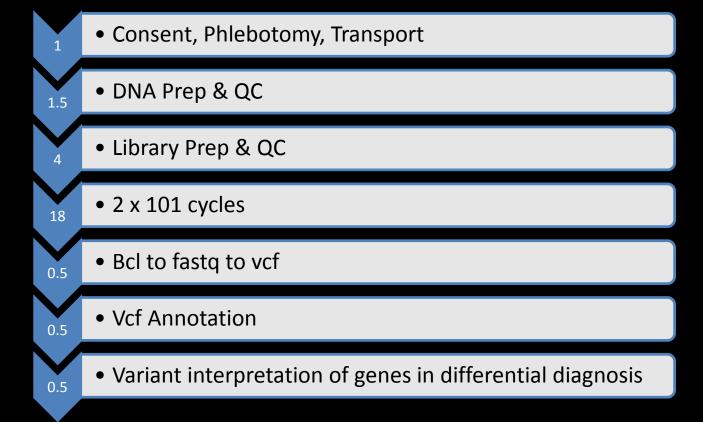
Est. DOL 7 Dx

Diagnosis Prior to Discharge	37%	Est. QALYs Added
Palliative Care Guidance	17%	
Life saved	3%	70
NICU stay ↓ by >1 month	3%	
Major morbidity avoided	6%	11
Genetic Counseling Change	11%	
Medication Change	11%	
Procedure Change	9%	
Diet Change	6%	


94%
31%
3%
34%
?

Our Perspective

Genomic Medicine


The Opportunity

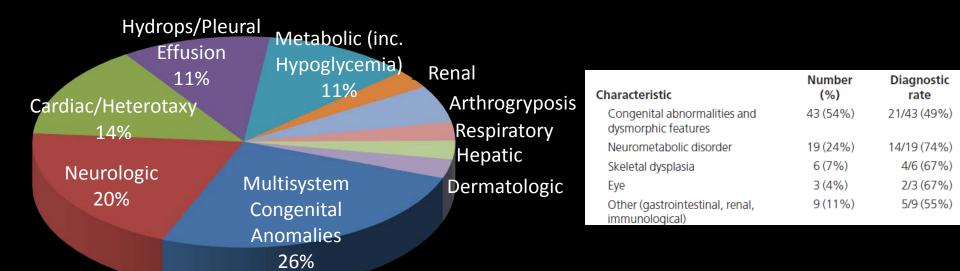
Genomic Medicine

Measurable impact County	Population 2014	Children with Genetic Diseases	Genome sequences / year	New Diagnoses / year	QALYs saved/ year
San Diego	3,263,431	22,126	8,284	1,327	5,773
SD,Imperial, Riverside, Orange	8,917,308	64,458	24,134	3,866	16,818

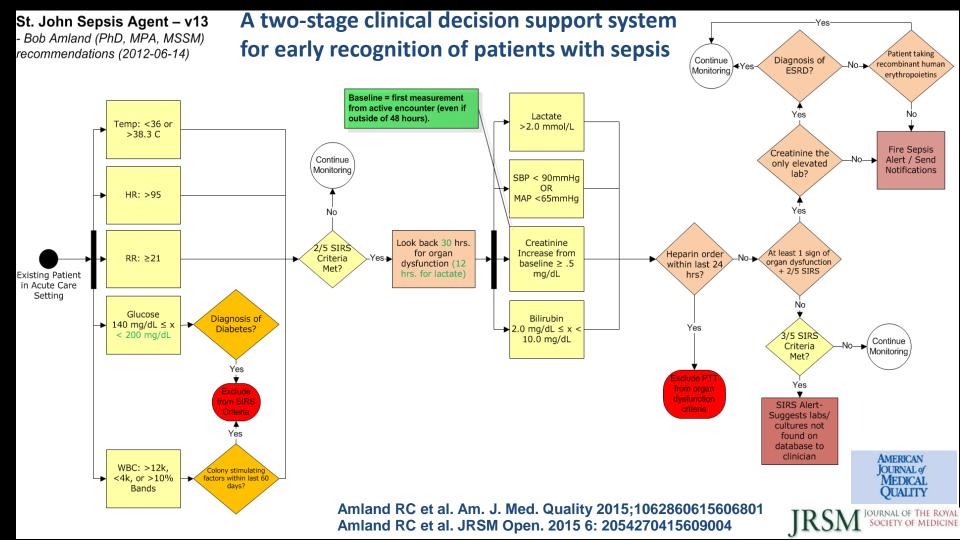
The bits we have figured out: 26 Hour Medical Genome Sequencing

Scalability of WGS/WES

Illumina Sequencer	Max.Families Per Year	Consumable cost per family	Time to result
Modified HiSeq 2500	100	\$20,000	18 hours
HiSeq X	600	\$2,700	18 days



The bits we havn't figured out


Timely Patient Ascertainment

No phenotypic feature associated with higher diagnostic yield

Innovation 1

- Automated, dynamic, electronic surveillance system for ascertainment of infants likely to benefit from genome sequencing
 - Data model
 - Algorithm
 - Paramaterize with database

Possible Sev

SEVERE SEPSIS Alert

Sepsis Screening Results

The following information suggests that this patient may have Severe Sepsis.

Sepsis Screening Results

The following information suggests that this patient may have Severe Sepsis.

Click on Screen button (lower left) to complete the Sepsis Screening and Stratification form and treat as clinically appropriate.

If you are not the Attending, Covering Attending, APP or Resident please press the Bypass button below.

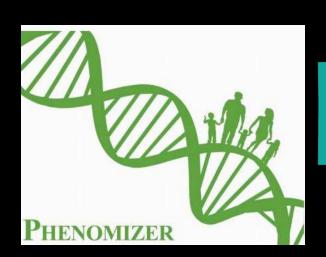
Date/Time Provider Notified

10/22/2014 09:00 Temp (39 degC) 10/22/2014 09:00 RR (25 br/min)

10/22/2014 09:00 Systolic BP (85 mr

Organ Dysfunction

10/22/2014 09:00 HR (120 bpm) 10/22/2014 09:00 Temp (39 degC) 10/22/2014 09:00 RR (25 br/min)


SIRS Criteria

Organ Dysfunction 10/22/2014 09:00 Systolic BP (85 mmHg)

Gap / Challenge 2

- Making a differential diagnosis
 - 916,000 MDs in US, but only 2,300 genetic counselors

Clinical Feature x OMIM Matching

EXOMIZER

Automated, dynamic clinical feature extraction from EHR & data-driven models of genetic disease topologies

Gap 3: The fiscal environment

The \$1,000 genome, the \$100,000 analysis.

Elaine Mardis, PhD Washington University, St. Louis

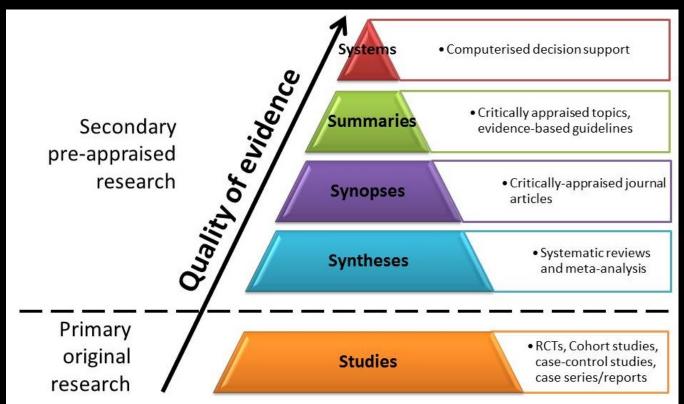
New variant (mutation) pathogenicity categories

Category	NEW CRITERIA
Pathogenic	1 VS + (1 S or 2 M/Supp) 2S 1S + (3M or 2M+2Supp)
Likely Pathogenic	1 VS/S + 1 M 1 S + (1 M or 2 Supp) 3 M 2 M + 2 Supp 1 M + 4 Supp

Very Strong	Null variant (nonsense, frameshift, ±1 or 2 splice site position, initiation codon, exon		
	deletion) in gene where LOF known to cause disease		
Strong	Same amino acid change as previously established pathogenic variant		
	• De novo in a patient with the disease and no family history		
	Functional studies show damaging effect on the gene		
	Prevalence in affected individuals significantly greater than controls		
Moderate	Located in mutational hot spot/functional domain without benign variation		
	• Extremely low frequency in Exome Sequencing or 1000 Genomes Projects		
	For recessive disorders, detected in trans with a pathogenic variant		
	Protein length changed by in-frame indel in nonrepeat region or stop-loss		
	• Novel missense at amino acid where different missense known to be pathogenic		
	• Assumed de novo, but without confirmation of paternity and maternity		
Supporting	Cosegregation with disease in multiple affected family members in gene known		
	to cause disease		
	• Missense variant in gene with low rate of benign missense variants and where		
	missense variants commonly cause disease		
	Multiple computational tools call deleterious		
	Phenotype highly specific for disease with single genetic etiology		
	Reputable source reports as pathogenic, but unpublished		

Genet Med. 2015 Mar 5. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of ACMG and AMP. Richards S, et al.

Solution: Automated Variant Curation & Semi-automoated Variant Filtering



VOISEQ®

Gap 4: Genome reimbursement

Solution: High quality evidence; strong MD support

Challenges

Solutions

Timely patient ascertainment

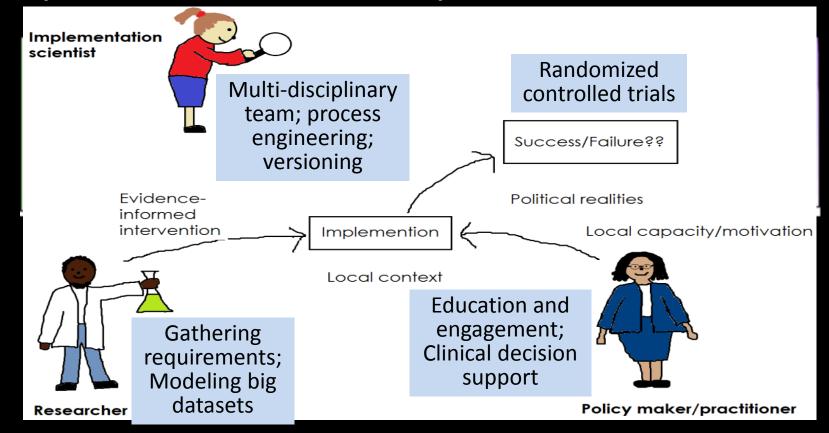
EHR-driven automated alert system

Genome cost versus timeliness

Moore's law, market forces

Comprehensive differential diagnosis

Automated diff. Dx. SW; EHR data extraction SW


Too few Lab Directors, Med. Geneticists, Genetic Counselors

Targeted education of generalist MDs and NPs; eCDSS

Inadequate reimbursement of genetic tests

Clinical trial evidence; capitated care

Increased Adoption of Genomic Medicine will require investments in Implementation Science

