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Sudden death: the genotype/phenotype problem
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Extracardiac phenotypes in cardiomyopathy




Clinical genomics: the other extreme

MedSeq Study (CSER)

— RCT of WGS

— Healthy primary care cohort
— Cardiomyopathy cohort

Likely pathogenic KCNQ1
variant identified in a primary
care patient

PCP/Patient disclosure
associated with anxiety attack
and immediate concern re
sudden death risk

“Feeling better or living longer”

A. MONOGENIC DISEASE RISK: 1 VARIANT IDENTIFIED

This test identified 1 genetic variant that may be responsible for existing disease or the development of diszase in this individual's lifetime.

Disease (Inheritance) Phenotype Gene (Variant) (lassification
AL Romano-Ward syndrome QT prolongation with risk for KCNQL (c.826delT Likely Pathogenic
{Autosomal dominant) syncope and sudden cardiac p.Ser276ProfsX13)
arrest
B. CARRIER RISK: 5 VARIANTS IDENTIFIED
This test identified carrier status for 5 autosomal recessive disorders.
o
Disease (Inheritance) Phenotype Gene (Variant) (lassification Ph::| TJ:type'
B1. Usher syndrome type Il Hearing loss, retinitis CLRNI (¢ 528T>G Pathogenic None
{Autosomal recessive) pigmentosa, and vestibular pTyrL76x) Reported
dysfunction
B2. Primary cengenital glaucoma | Increased intraocular pressure | CYP1B1 [c.L71G2A Pathogenic Late onset
{Autosomal recessive) p.TrpsTx) glaucoma
(casereport
only)
B3. Recurrent hydatidiformmole | Mass or growth that forms NLRPT (337 338insG | Pathogenic None
{Autosomal recessive) inside the womb p.Glul13GlyfsXT) Reported
B4. Jervell and Lange-Nielsen Congenital profound bilateral | KCNQL (¢.826delT Likely Pathogenic Romzno-Ward
syndrome sensorineural hearinglossand | p.Ser276Profsk13) syndrome
{Autosomal recessive) longQT (see above)
B5. Alpha-N-acetylgalactosaminidageVariable infantile neuroaxonal | NAGA (c479C-G Likely pathogenic Nene
deficiency dystrophy p.Serl60Cys) Reported

{Autosomal recessive]

As a carrier for recessive genetic variants, this individual is at higher risk for having a child with ene or more of these highly penetrant disorders. To
defermine the risk for this individual's future children to be affected, the partner of this individual would alsc need to be tested for these variants.
Other biologically related family members may also be cariers of these variants. *Carriers for some recessive disorders may be at risk for certain

phenotypes. Please se variant descriptions for more information,




Pathogenicity assessment

In vitro assays
In vivo assays

Patient
“.. but my QT was normal”

Is it always the phenotype?
— Segregation
— Penetrance
— Pleiotropy

Relationship between all of these metrics
and risk obscure

We need quantitative assays mapped
onto people
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Potential clinical studies
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Family study reveals ‘overlap syndrome’

‘Condition-specific’ family history
Proband

Physical exam-S4 and ESM
QT-466ms
QTc-461ms

EKG morphology-Normal
Echo-Focal LVH and MV thickening
MRI-Normal

Provoked phenotypes
* QTc at 4 mins recovery 400ms

Definite abnormalities observed
? Phenotype expansion
? False positive

Genotypic and phenotypic uncertainty

Actual risk — unmeasured

Additional clinical and genetic
testing>$8000

Remember this is a ‘known’ gene and a
typical family
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Phenotype Is now limiting in multiple arenas

Clinical care
Genetics/genomics
Precision medicine

Fundamental issues

— Morphology dominates
— Semi-subjective at best
— Late or even end-stage . |
— Aggregation for statistical power ks

— Legacy — better at measuring same old
phenotypes

— Binary
— Cross-sectional
— No systematic perturbations







Where Is all the information?

Why are alleles ‘silent’?
— Inaccessible to current study designs
— Inaccessible to current assays
— Unmeasured conditioning variables

Genetic architecture dependent on
phenotypic architecture

— Phenotypic resolution

— Selection pressures

— Environmental contributions

— Not assessed for most disease traits

Limitations of genetics to date
— Focused on extreme phenotypes
— Few prospective cohorts

— If familiality detectable how many genes
involved?

— Heterogeneity also scales: GWAS

Disease definitions always evolving
— Overlapping causes
— Overlapping therapies
— More precise medicine
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How might model organisms help?

Saturation screens: to identify all of the
genes for a given trait

— Phenotype anchoring for validation

— Extreme perturbation -
— Not just F3 recovery but all of the alleles “Phenome to Genome”
(phenotype) — _
Health Disease © « Chemical & Physical
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- Few attempts at in vivo disease screens |\\\\ y——— Variants (CNVs)

Environment
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across environmental space ) * Genome
— Drug discovery as a special case

”Genome to Phenome”

Identify gaps in genetic or phenotypic
architecture Zak Kohane

Iterative systems level modeling

Mapped to human genotype and
phenotype



Model organisms: scalable parallel phenotyping

Molecular imaging
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A shelf screen for Q
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we cannot reliably identify unaffected individuals | | ] T aes
- Different major effects in each family .ﬁ ﬁ. ﬁ adh
Need to: |

Blocks In translation: AFib Genetics

Formal kin-cohort study-220 families I o i ﬁm
High narrow sense heritability high . ﬁ s
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Explore existing pathways identified in man |
Define better phenotypes |
— Biomarkers
— New structural or functional assays |
— “AF threshold” ‘
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Genotype but no phenotype

12 GWAS loci for AFib
All genes/miRNAs/linc RNAs

within 3Mb

|dentify shared network

Permutation to maximize
functional linkage information

Network of cell coupling pathway
genes identified

— Perturb primary cell circuitry in
heart

Human phenotype rate-limiting
No pre-event biology
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Modeling chronic disease in 5 days in a fish

Poorly penetrant

Arrhythmia
Sudden death
Cutaneous abnormalities

Contractile abnormalities

» Congestive heart failure
« Biomarker abnormalities(nt-BNP)

Compen satory
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« Whnt signaling perturbed
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Genotype anchoring

« Multiple disease alleles modeled
* Morpholino, CRISPR, rescue, transgenesis
* Recapitulate structure and function

* Modeling human allelic series

Conditional germline mutant (GAL4::UAS)
» Allows screening

Gal4/UAS:
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Bpm (+-SD)

Phenotype anchoring

Ipgg: Cument-voltage relationship
Naxos vs. Naxos cirl zebrafish ventricular myocytes
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High throughput screen
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The Dhenotyp gap’

Connectome Physiome

Proteome

Single cell
multipliers

Timescales

Genome
E Perturbations

ﬁ@@uﬁﬁ

NHGRI GWA Catalog
WWWLEEnome. gov/ GWAStudies

All clinical phenotypes

Exposome




We need new translatable human phenotypes

Current syndromes are really aggregates of
many different disorders dating from ~1800s

— Diabetes Glucose
— High blood pressure Taste
— Cardiovascular diseases
Different clinical outcomes
Different therapeutic responses
: - Cholesterol
We have focused on measuring serendipitous Visible

endpoints more precisely

Deliberate reduction in complexity
Limited dimensionality
No clear organizing stimulus




Reappraisal of existing data types

FO Cus on reS 0O I u tl on an d | Chromosome 3 Chromosome 7 B fhmmosome 1 |
computability

Collect structured data in eHR i

Reanalysis of existing datasets
— Standardized acquisition
— New analytic approaches

* Machine learning defines new EKG subsets o=

— Infrastructure
o Storage
» Computation
« Data display
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Functional genomics
— New comprehensive datasets aoon
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‘Next generation’ phenotyping

Ambient technologies * B l

— Patient entered data- integrated
with EHR

— Symptom ontologies

— Integrated autonomic testing
— Retinal scans

— Thermography
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Rigorous probability estimates

Extant systems/network biology

Family history-quantitative
Population lifetime risk studies
Network structures and responses
Measured exposures

Shared phenotypic lexicon
‘Mechanistic’ phenotypes

Bidirectional ‘learning’ information
systems

Co-clinical modeling

All at population scale

Comprehensive multi-scale
dynamic phenotyping



Inteqratmq cllnlcal care and translation

Proxsense

!
W =

* Technology benchmarking and validation
* Controlled phenotyping environment

* Mapping onto existing paradigms

* Massive increase in information content

‘Next generation
computable
physical exam’



Summary

Genome interpretation requires knowledge of conditioning variable
— Pretest probabilities
— Family history
— Exposures
— Baseline population data

Scalable animal modeling is emerging as a partner for clinical
genomics

— Genotype and phenotype anchoring

— Allow iterative validation of in silico models

— Systems level understanding of disease

— Embedding drug discovery in the clinic

Phenotypic innovation and therapy align genomic discovery, clinical
care redesign and cost

— Shared lexicon for translation

— Exploit and extend existing model organism data
— Genomes/phenomes/perturbations and networks
— Avoid unaffordable duplication

Establish a new minimal clinical dataset to maximize information
content

— Symptoms

— Cellular - universality

— Quantitative/linear/stimulus-response pairs

— Complement current clinical care, genomics, eHealth
— Embedded in clinical platforms with education
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