Functional Genomics @ Scale

A long-term goal of functional genomics is to
decipher the rules by which genomes, genes
and gene networks are regulated and to
understand how such regulation affects cellular
function, development and disease.



Functional Genomics @ Scale

 What are the big challenges that can be solved
and needs to be met relative to functional role
of genomic variants in health and disease?

e What should be the role of NHGRI vs. other
funders?

 What are the consequences if NHGRI decides
not to pursue this area?



Functional Genomics @ Scale

No existing _sequencing_ programs are directly pursuing functional
genomics at scale*

*The only scaled effort towards interpreting function going on in the
large-scale sequencing program is computational.

Example: associated variants found in a common disease phenotype
can be linked to pathway (e.g. voltage-gated calcium channel genes
and schizophrenia).This is “scaled” in the sense that only a large
number of samples allows the power to attempt the clustering.

*One can also argue that the Centers for Mendelian Genomics are
doing scaled studies on function. Although the individual "solved"
Mendelian disease genes are each an achievement, it is the collection
of them (including allelic series/expansions) that is functionally
informative about human biology.



Functional Genomics @ Scale

Existing NHGRI large functional genomics programs that
have a connection to use in interpreting variants include:

ENCyclopedia Of DNA Elements (ENCODE)

Genomics of Gene Regulation (GGR)

Functional Variants (FunVar)



ENCODE 710,

[

The long-term goal of the ENCyclopedia of DNA Elements (ENCODE) and
ModENCODE Projects is to generate comprehensive catalogs of all functional
elements in the human genome and genomes of selected model organisms

Summary of the coverage of the human genome by ENCODE data.
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Genomics of Gene Regulation
(not yet funded)

Aims to explore genomic approaches to understanding the role of
genomic sequence in the regulation of gene networks.

Aims to address the genome-proximal component of the regulation of
gene networks by developing and validating models that describe
how a comprehensive set of sequence-based functional elements
work in concert to regulate the finite set of genes that determine a
biological phenomenon, using RNA amounts, and perhaps transcript
structure, as the readout.

Aims to substantially improve the methods for developing gene
regulatory network models, rather than an incremental improvement
on existing methods.

Long-term goal- to read DNA sequence and accurately predict when
and at what levels a gene is expressed, in the context of a particular
cell state.



Functional Variants
(not yet funded)

* FunVar aims to develop highly innovative computational
approaches for interpreting sequence variants in the non-
protein-coding regions of the human genome.

« Will analyze whole-genome sequence data by integrating data
sets, such as ones on genome function, phenotypes, patterns
of variation, and other features, to identify or substantially
narrow the set of variants that are candidates for affecting
organismal function leading to disease risk or other traits.

 The accuracy of the computational approaches developed will
be assessed using experimental data.



Common Fund Resources for Interpretation of Variants
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*These are Common Fund efforts with significant NHGRI involvement



4D Nucleome

 The 4D Nucleome program will develop
technologies to enable the study of how DNA Is
arranged within cells in space and time (the fourth
dimension) and how this affects cellular function in
health and disease.

* 4D nucleome science aims to understand the
principles behind the organization of the nucleus in
space and time, the role that the arrangement of
DNA plays in gene expression and cellular
function, and how changes in nuclear organization
affect health and disease.



Functional Genomics @ Scale

e Resources for Interpretation of variants

* Functional validation of variants



Incorporating conservation and regulatory annotations
to prioritize SNVs

The complementary nature of evolutionary, biochemical, and genetic evidence.

(ma@mmalian conservation)
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Incorporating conservation and regulatory annotations
to prioritize SNVs
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Enhancers can act over a long range, making
it challenging to define their targets

LETTER Nature, 2014

doi:10.1038/naturel313B8

Obesity-associated variants within FTO form
long-range functional connections with IRX3
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Opportunity to explore long-range
chromatin interactions and regulation

Genome-wide survey of long-range chromatin
Interactions in mammalian cells

General features of chromatin organization and
dynamics

Local chromatin interactions reveal
enhancer/promoter interactions

Functional analysis of long-range regulatory elements



Hi-C: a method for genome-wide analysis of
higher order chromatin structure

Fix Cells _
Hindll| ngate

rrccan Blotln Labellng

.- ..

« 7
\1 \; U LL.

Cross Linking Q Proximity Ligation ‘ Sequencing

Lieberman-Aiden et al., Science 2009



Genome-wide analysis of higher order
chromatin structure in human and mouse cells
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Higher Hi-C frequency = shorter spatial distance

Lower Hi-C frequency = longer spatial distance



Strategies for functional study of enhancers

Introduce mutations into Exploit the naturally
each enhancer in their occurring seguence
endogenous locus and variants (SNPs)
test for changes in gene between the two copies
expression of DNA in each cell
Pros: most direct = Pros: global and
Cons: low throughput; may genome-wide
not applicable to humans = Cons: need to know the

haplotypes




Hi-C data can inform on haplotypes- Haplo-seq
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Complete haplotypes in H1 hESC using HaploSeq
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Allele-specific transcription, chromatin state
and DNA methylation in H1 cells
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Allele-specific transcription Is correlated
with allelic chromatin state at enhancers

Allelic gene: chr1.222611217 200bp
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Functional Genomics @ Scale

e Resources for Interpretation of variants

e Functional validation of variants



Dissection of regulatory sequences using massively parallel reporter assays
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Understanding the Grammar of Gene
Expression Regulation

Transcriptional grammar cards

Expression functions

expression
expression
expression

Weingarten-Gabbay and Segal (2014) Hum Genet



Powerful New Genome Editing Approaches

A DNA double-stranded break (DSB)
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CRISPR/Cas9 Genome Editing Applications
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Validate the cis-regulatory functions of enhancers
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Using CRISPR/Cas9 to mutate enhancers
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Validate Sox2 enhancer function using
CRISPR/Cas9

Scal
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Sox2 expression is completely driven by a

distal enhancer
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Cas9 editing tools can be used in a variety of contexts
to assess the function of sequence variants

Guide Cloning of Multiple Enrichment
library guide RNA Lentivirus library genotypes of desired
synthesis plasmid library and phenotypes phenotype

Hsu et al. Cell 2014 157, 1262-1278
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Generation of mouse models of myeloid malignancy
with combinatorial genetic lesions using CRISPR-Cas9

genome editing

Dirk Heckl!->, Monika S Kowalczyk?-¢, David Yudovich!'6, Roger Belizaire!-3, Rishi V Puram!,
Marie E McConkey!, Anne Thielke2, Jon C Aster?, Aviv Regev?# & Benjamin L Ebert!-2

Genome sequencing studies have shown that human
malignancies often bear mutations in four or more driver
genes!, but it is difficult to recapitulate this degree of genetic
complexity in mouse models using conventional breeding.
Here we use the CRISPR-Cas9 system of genome editing2#
to overcome this limitation. By delivering combinations of
small guide RNAs (sgRNAs) and Cas9 with a lentiviral vector,
we modified up to five genes in a single mouse hematopoietic
stem cell (HSC), leading to clonal outgrowth and myeloid
malignancy. We thereby generated models of acute myeloid
leukemia (AML) with cooperating mutations in genes encoding
epigenetic modifiers, transcription factors and mediators

of cvtokine signaling. recapitulatine the combinations of

cell populations for myeloid malignancies, is complicated by the
difficulty of using common nonviral gene transfer methods in
these cells.

To perform genome editing with high efficiency in primary HSPCs,
and to track the engineered cells in vivo, we generated a modular len-
tiviral sgRNA:Cas9 vector for modeling of myeloid malignancies by
genome editing in primary HSPCs in vivo (Fig. 1a and Supplementary
Fig. 1). This lentiviral vector simultaneously delivers the Streptococcus
pyogenes cas9 gene, a chimeric sgRNA and a fluorescent marker, simi-
lar to our recently developed system?3!3-14, This enables the targeting
of any genomic locus in a broad range of cell types, and consequent
nonhomologous end-joining (NHE])-mediated gene disruption, by
a one-step exchanee of the tareet site (spacer).



Current favorite example: the challenge of
understanding non-coding variants

VOLUME 46 | NUMBER 7 | JULY 2014 NATURE GENETICS

A molecular basis for classic blond hair color in Europeans

Catherine A Guenther!:2, Bosiljka Tasic>>, Liqun Luo®3, Mary A Bedell* & David M Kingsley!-?

Hair color differences are among the most obvious examples
of phenotypic variation in humans. Although genome-wide
association studies (GWAS) have implicated multiple loci in
human pigment variation, the causative base-pair changes are
still largely unknown'. Here we dissect a regulatory region

of the KITLG gene (encoding KIT ligand) that is significantly
associated with common blond hair color in northern
Europeans?. Functional tests demonstrate that the region
contains a regulatory enhancer that drives expression in
developing hair follicles. This enhancer contains a common
SNP (rs12821256) that alters a binding site for the lymphoid
enhancer-binding factor 1 (LEF1) transcription factor, reducing
LEF1 responsiveness and enhancer activity in cultured human
keratinocytes. Mice carrying ancestral or derived variants of
the human KITLG enhancer exhibit significant differences in
hair pigmentation, confirming that altered regulation of an
essential growth factor contributes to the classic blond hair
phenotype found in northern Europeans.

improve genetic predictions compared to common linked markers!?
and facilitate comparison of traits and mutations among both past
and present populations!4,

Human KITLG (mouse Kitl) encodes a secreted ligand for the KIT
receptor tyrosine kinase and has an essential role in the development,
migration and differentiation of many different cell types in the body,
including melanocytes, blood cells and germ cells!>. Null mutations
affecting Kitl or Kit are lethal in mice, and hypomorphic alleles cause
white hair, mast cell defects, anemia and sterility'®-18. A noncoding
SNP (rs12821256) located in a large intergenic region over 350 kb
upstream of the KITLG transcription start site is significantly associ-
ated with blond hair color in Iceland and The Netherlands? (Fig. 1a).
This SNP shows relatively large odds ratios of 1.9-2.4 per allele asso-
ciated with blond versus brown hair in northern Europeans (multi-
plicative model?). Together with variants in other genes, rs12821256
helps explain 3-6% of the variance in categorical hair color scores?
and is now one of several markers used for predictive testing of human
hair color!®. The blond-associated A>G substitution at this position
is prevalent in northern Eurobean populations but virtuallv absent



Variant interpretation: population/mouse genetics
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Variant interpretation: sequence conservation
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Variant interpretation: in vivo functional assay
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Variant interpretation: functional assay in cell culture
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Variant interpretation: functional assay -transgenics
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The study Kingsley highlights why it is still so difficult to identify the
causal basis of human trait associations:

The associated SNP (rs12821256) maps more than 350 kb from KITLG,

acts at a specific anatomical site whose active enhancers have not yet been
characterized in large-scale studies of human chromatin marks,

alters a sequence that does not perfectly match a LEF1 consensus binding site and

only causes an approximately 20% reduction in the activity of a previously
unrecognized hair follicle enhancer.

BUT the study also illustrate how these difficulties can now be overcome using:

information from human population surveys,

large-scale genome annotation projects and

transcription factor interaction databases in combination with

detailed functional tests of enhancer activity in cell lines and in mice.




Breakout Session (Gerstein/Myers)
Integrating functional genomics with DNA sequence variants

1) What is function in genomics & how do we use it to determine the effect of variants?

What are the different aspects of function and why is it hard to study? For instance, molecular (or
biochemical) function vs cellular role vs organismal phenotype.

What are the problems in defining function? Is it meaningful to localize a function to a single place on
the genome so it can be affected by a single variant? How should one think about the functional effect
of large block variants?

Is it possible to quantitatively systematize some aspects of function so that they can be precisely
related and correlated with genomic variants? In particular, what are the paradigms available to inter-
relate function with variants (eg QTLs & allelic effects and phenotypes resulting from a single
disruption)?

2) How do we inter-relate function & variants on a large scale?

Is this best done by individual investigators pooling together individual results into a database or is it
best done by large-scale, highly standardized experiments? What is the role of special big data
database architectures for aggregating the knowledge of many functional assays?

Is it more effective to follow up on the many disease-associated variants uncovered by sequencing in
great detail rather than doing broad genome-wide functional characterization beforehand?

Are there ways for new high-throughput technologies and computational approaches to significantly
help with this endeavor?

How do we prioritize those experiments and assays that provide more functional information
compared to others? Is there a particular way of assessing the information in particular experiments?

3) How do we validate functional effects of variants in genomics?

Is it possible to validate thousands (or millions) of assertions about the genome with one or two small-
scale validation experiments?

Is it possible to do validation at a very large scale? Is medium-scale validation possible and useful?
How to think about the cost of this?

How do we incorporate the results of validation into quantitative error estimates for the functional
assertions being made?
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