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Uncovering hidden genes in intergenic GWAS 

regions with RNA capture sequencing
 

• The pervasive transcriptome and “intergenic” genome-

wide association study (GWAS) regions 

• Detecting transcription with RNA Capture sequencing 

• Using capture sequencing for novel gene discovery in 

human “intergenic” GWAS regions 
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• At least 75% of the human genome is transcribed, though 

a lot of this is transcribed at low levels (ENCODE 2012)
 



      

 

   


 


 




 




 


 

the total set of lncRNAs—probably due to the higher expression of
the lncRNAs in this subset, and the greater precision of their 59
annotation. In summary, expressed lncRNAs have histone modifi-
cations indicative of actively regulated gene promoters.

Some lncRNAs may be post-processed into smaller RNAs,
particularly snoRNAs
Many lncRNAs may serve as precursors for functional small RNAs
(sRNA), with or without having intrinsic functionality them-
selves (Askarian-Amiri et al. 2011). To evaluate this for the present
lncRNA set, we compared their genomic position with small
RNAs on the same strand, as annotated by GENCODE (Harrow
et al. 2012). A total of 27% of all annotated small RNAs (tRNAs,
miRNAs, snRNAs, and snoRNAs) map within the genic bound-
aries of 7% of all protein-coding genes, while 5% of small RNAs
map within the boundaries of 4% of all lncRNAs. This does not
necessarily rule out a propensity for lncRNAs to host small RNAs
compared with protein-coding genes, because this analysis is
biased by the greater number and length of protein-coding
genes. To control for this, we computed the proportion of nu-
cleotides in lncRNAs that overlap different classes of small RNAs,
and compared it with similar data for protein-coding genes and
intergenic background. This revealed that lncRNA exons are en-
riched for all classes of small RNAs, with the exception of snRNAs,
compared with other genomic domains, including lncRNA in-
trons. Particularly striking is the enrichment for snoRNAs, which

are present in sixfold excess in lncRNA exons compared with
other genomic domains (Supplemental Fig. S7). Nevertheless, it is
important to note that, in absolute terms, more snoRNAs arise
from lncRNA introns compared with exons, due to the far greater
length of the former.

LncRNAs show lower and more tissue-specific expression than
protein-coding genes
We investigated the expressionpatterns of lncRNAs in awide range
of humanorgans and cell lines using available RNA-seq data aswell
as a custom lncRNAmicroarray. We were particularly interested in
understanding the magnitude of lncRNA expression, as well as its
degree of tissue specificity.

Using RNA-seq

We used RNA-seq data obtained in various human tissues by the
Illumina Human Body Map Project (HBM) (www.illumina.com;
ArrayExpress ID: E-MTAB-513). HBM reads were mapped using the
ENCODE RNA-seq pipeline (Djebali et al. 2012) and GENCODE
lncRNA transcripts were quantified, as RPKM (read per kilobase of
exon per million mapped reads) (Mortazavi et al. 2008), using the
FluxCapacitor (Montgomery et al. 2010). We computed the dis-
tribution of expression of lncRNAs and protein-coding genes
across the 16 tissues profiled in the HBM project (Fig. 5A). As
shown previously (Ravasi et al. 2006; Ørom et al. 2010), lncRNAs
show lower expression in all tissues compared with mRNAs, al-

Figure 5. Characteristics of lncRNA expression in human tissues. (A) Distributions of lncRNA (blue) and protein-coding (red) transcripts’ expression
(log10 RPKM) in HBM tissues. (B) Distribution of the number of HBM tissues in which lncRNA and protein-coding transcripts’ are detected (RPKM > 0.1).

GENCODE v7 lncRNA catalog

Genome Research 1781
www.genome.org

Cold Spring Harbor Laboratory Press on September 6, 2012 - Published by genome.cshlp.orgDownloaded from 

Transcripts can be lowly and specifically expressed
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Red: coding genes. Blue: lncRNAs ENCODE 2012
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• 88% of identified SNPs are intergenic or 
intronic (Hindorff et al. 09)

• SNP may not be causative allele, but this 
should be in a region of linkage 
disequilibrium (LD) around SNP

• Hundreds of GWAS LD regions are 
intergenic.

• Are these really empty of genes, or have 
we just not found them yet?

• Aim to discover novel genes within these intergenic GWAS regions
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Limitations of RNAseq: Rare or restricted 
transcripts

• Rare transcripts:

The most abundant 1.5% of transcripts take up almost half the 
RNAseq reads, while only 1% of reads are measuring the least 
abundant 44% of detected transcripts (Jiang et al. 11).

• Transcripts with restricted expression:

A transcript expressed at an average level (10 copies per cell) in 
0.1% of brain cells (~170 million cells), requires ~400 million 
reads for 1x coverage. 

8x coverage is required for robust assembly (Jiang et al. 11)..

• RNA Capture Sequencing provides a potential method to detect 
transcripts with rare or restricted expression.
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This approach can characterise transcripts with rare or transient expression that is 
below the detection limits of conventional sequencing approaches. 
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Probed region RNAseq Novel assembled exon Novel splice junction
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 Intergenic regions
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RNA capture sequencing can discover new transcripts

Mercer et al. 2011 
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Identifying novel genes in “intergenic” GWAS 
regions 

Advantage of GWAS regions over other intergenic regions is we know these 
regions are functionally relevant.



339 intergenic GWAS linkage blocks, covering a total of ~50 Mbp of the genome (~1.7%).

Targeting “intergenic” GWAS regions for ~150 
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Design of custom RNA-capture RNA to target ~150 disorders

339 intergenic GWAS linkage blocks, covering a total of 50 Mbp of the genome (~1.7%). 
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~0.2% of the RNA in pre-capture library 
now comprises ~60% in the post-
capture library.
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Comparing the percentage of mapped 
reads from targeted regions pre- and 
post-capture

~0.2% of the RNA in pre-capture library 
now comprises ~60% in the post-
capture library.

336 fold enrichment from CaptureSeq
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Sequencing based enrichment: HMBS control loci

• HMBS is a control loci that we capture

• Sequencing confirms large enrichment measured globally and by qPCR

• Assemble realistic transcripts from Capture sequencing

2 kb
Captured regions

RefSeq Genes

GWAS_capture_normalized

Precapture sequencing normalized

Spliced transcripts from GWAS capture_sequencing

 Precapture sequencing transcripts
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Median of 4 spliced transcripts per locus

Spliced transcripts covered a total of 55.6 
Mb with many transcripts transcribed 

into, or out of, the captured regions.
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Majority of captured transcripts are 
entirely novel or contain novel exons  

of distal genes.

1,500 transcripts were identified (compared 
to 110 transcript in pre-capture).
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1500 transcripts identified in “intergenic” GWAS 
regions 
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Remainder of ~1500 transcripts are 
novel coding gene isoforms and 
transcripts of uncertain coding 

potential.

Stringent filtering identifies 657 
new lncRNAs in 369 loci

Vast majority are completely novel
657

LncRNA
Transcripts

650 novel lncRNAs identified in “intergenic” GWAS 
regions 



Human loci associated with heart QT length, but doesn’t contain any known genes. 

Identifying novel human genes with capture seq
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Gencode v12 annotations

Cabili 2011 lincRNAs

Genome-Wide Association
Study SNPs rs2478333rs1575891 rs8001976

Transcripts from
precapture sequencing

Transcripts from
GWAS capture sequencing

Human loci associated with heart QT length, but doesn’t contain any known genes. 

Identifying novel human genes with capture seq

Capture sequencing finds many new transcripts, these 
can now be functionally tested.
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NEBL
(Nebulette)

Gencode v12 annotations

rs16920624 rs2359536Genome-Wide Association
Study SNPs

GWAS regions contains novel 5’ or 3’ extensions of known genes.

Identifying novel human genes with capture seq

•  Captured GWAS region contains a novel isoform of the coding gene 
Nebulette (NEBL).

•  A very recently annotated putative miRNA is present in the GWAS region 
on +ve strand. Likely we have also identified its host transcript(s).



Capture seq resolves fragmented annotations

•  Region of chr8 associated with prostate cancer by a number of studies.
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Capture seq resolves fragmented annotations

•  Region of chr8 associated with prostate cancer by a number of studies.

•  Capture sequencing combines previously annotated lncRNA fragments in 
complex alternatively spliced loci
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Capture-seq vs Hangauer 2013 lincRNA catalogue
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Capture-seq vs Hangauer 2013 lincRNA catalogue

Transcripts from 
capture-seq

Cabili lincRNAs

Gencode V12

Haplotype blocks
GWAS SNPs
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POU5F1B
POU5F1B

Hangauer 2013  
lincRNA catalogue

Capture-seq outperforms other novel gene catalogues
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Summary: Intergenic GWAS capture 
sequencing

•Capture-seq allows unprecedented depth of coverage and 
enriches transcripts standard RNA-seq cannot identify.

•We find extensive transcription within and across “intergenic” 
GWAS regions, identifying ~1500 mostly novel transcripts.

• Investigating intergenic GWAS regions with capture seq is a 
good method for identifying potentially functional lncRNAs.

•These novel transcripts provide candidates to explain the traits 
associated with some of these regions.
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