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Published Genome-Wide Associations through 07/2012
Published GWA at 55X10'8 for 18 trait categories

As of 7/9/2013, the catalog includes
1,654 publications and 10,976 SNPs.

NHGRI GWA Catalog
www.genome.gov/GWAStudies

Institute

P cenome Research ypryywy,ebi.ac.uk/fgpt/gwas/ EMBL-EBI:

@ Digestive system disorder
@ Cardiovascular disorder
(© Metabolic disorder

() Immune system disorder

) Neurological disorder

D
@ Liver enzyme measurement
(© Upid or lipoprotein measurement

© Infi y marker

(@ Hematological measurement
@ Body measurement

@ Cardiovascular measurement
@ Other measurement

() Chemical compound

© eiological process

@ Cancer

@ Other disease

@ Other trait

( :-, Trait mapping in progress




Distribution of Effects

Median =1.28
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Distribqution of Effects

Nonlinear Effects
The High-Hanging Fruit

-

Linear Effects
The Low-Hanging Fruit
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Moore and Williams. Am J Hum Genet. 2009: 85(3): 309—320



y Missing Heritability

S . Under our nose
555‘ e Out of sight

. . . oge
The case of the missing heritability
L]
When scientists opened up the human genome, they expected to find the genetic components of
commonltrailtsand disea:es. But :hey were nowhere toxbe seen.Br::ndan Maher shinesa light on o I n t h e a rC h It e Ct u re

six places where the missing loot could be stashed away.

 Underground networks

* Lostin diaghosis
 The great beyond
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ﬁ Maher, B. Nature 2008; 456:18-21.




Biology is complex
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Statistical vs. biological epistasis
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ﬁ Moore and Williams, BioEssays 27:637—-646, 2005



If interactions with minimal main effects are
the norm rather than the exception, can we
analyze all possible combinations of loci with
traditional approaches to detect purely
interaction effects ?

PENNSTATE

NO




How many combinations are there?

B ~500,000 SNPs to span the genome (HapMap)

2 x 1026 combinations
* 1 combination per second

* 86400 seconds per day

2.979536 x 102" days to complete
(8.163113 x 1018 years)
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How many combinations are there?

B ~500,000 SNPs to span the genome (HapMap)

5 Million SNPs in current technology

# models time**
1 SNP 5.00x106 5 sec
2 SNPs 1.25x1013 144 days
3 SNPs 2.08x1019 2.4x108 days
4 SNPs 2.60x102° 3.01x10'4 days
5 SNPs 2.60x1031 3.01x1020 days
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i _,h“‘;‘;;::‘?";"" # SNPs # models time**
“inflation," ot soup of
Rl 1 SNP 5.00x106 5 sec
somiiina s 2 SNPs 1.25x1013 144 days
iny. fraction =\
: \ota:socond @ 3 SNPS 2.08x1 019 2.4x1 08 days
' 4 4 SNPs 2.60x102° 3.01x10'4 days

5 SNPs 2.60x103%1 3.01x102?° days

NOTE: The numbers in cosmalogy are 2o great and the pumbers in substenlc phy
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Epistasis Analysis in GWAS data

¢ Exhaustive evaluation

e Evaluate interactions in top hits from single-
SNP analysis

e Use prior biological knowledge to evaluate
specific combinations — “Candidate Epistasis”

PENNSTATE

Bush WS, Dudek SM, Ritchie MD. Biofilter: a knowledge-integration system for the multi-locus analysis of genome-
wide association studies. Pacific Symposium on Biocomputing, 368-79 (2009).




The Biofilter

Use publicly available databases to
establish relationships between
gene-products

Suggestions of biological epistasis
between genes

Integrating information from the
genome, transcriptome, and
proteome into analysis
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ﬁ Bush WS, Dudek SM, Ritchie MD. Biofilter: a knowledge-integration system for the multi-locus analysis
of genome-wide association studies. Pacific Symposium on Biocomputing, 368-79 (2009).




LOKI: Library of Knowledge Integration

Protein

Genes and SNPs o
Families

. .

« dbSNP * Pfam
* NCBI Entrez Gene

Regulatory
Gene and Protein A Regions

Interactions Library » ORegAnno

* BioGRID of

« MINT
« PharmGKB Knowledge

Integration
(LOKI)

Pathways

.

* Gene Ontology
* KEGG Annotations
* Reactome . Y

* NetPath * NHGRI GWAS Catalog

PENNSTATE

ﬁ Bush WS, Dudek SM, Ritchie MD. Biofilter: a knowledge-integration system for the multi-locus analysis
of genome-wide association studies. Pacific Symposium on Biocomputing, 368-79 (2009).




The Biofilter

 Method described: Bush et al. 2009 Pacific
Symposium on Biocomputing

* Applications
— Multiple Sclerosis
* Bush et al. 2009 ASHG talk, 2011 Genes & Immunity
HDL
* Turner et al. 2010 ASHG Talk, 2011 PLoS ONE
HIV Pharmacogenomics
* Grady et al. 2010 ASHG poster, 2011 Pacific Symposium on Biocomputin
Lipid traits
* Holzinger et al. in preparation
BMI
 Verma et al,, in preparation
— Cataracts

pennSTATE ¢ Hall et al., in preparation




Using Biofilter: GWAS Annotation

Are there biological relationships between significant results?

Single Locus Statistical Results Biofilter Analysis Annotated Statistical Results

SNP 1, Rs101841, p = 0.000163 Pathway | ) Results in the Same Gene
SNP 2, Rs182645, p = 0.000268 SNP 3, Rs23876, p = 0.00324
SNP 3, Rs23876, p=0.00324 | ) _/SNP 6, Rs8751, p =0.03412
2:E g: 223;222?’ g ; 882;2?4 Product 3 Results in the Same Pathway
SNP 6, Rs8751, p =0.03412 Reaction 4 \Producc4 SNP 2, Rs182645, p = 0.000268
SNP 7, Rs86745, p = 0.03685 Reakion 3 SNP 3, Rs23876, p =0.00324
SNP 8, Rs41254, p =0.04675 SNP 6, Rs8751, p =0.03412
SNP 7, Rs86745, p = 0.03685

Reaction Product 2

Results with Biological Interaction
SNP 3, Rs23876, p =0.00324
SNP 6, Rs8751, p=0.03412
Gene 2 Gene 4 SNP 7, Rs86745, p = 0.03685

LSNF>7 \SNPZ
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Using Biofilter: Prioritizing Analysis
Is there epistasis in genes whose products interact either directly
or through a metabolic intermediate?

Reaction 2

Output / Gene

Product 2
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Using Biofilter: Prioritizing Analysis

Is there epistasis between genes of two related pathways?

Pathway | Pathway 2

® SNP 7

: ® SNP 8
Disease ® SNP 9

Phenotype ® SNP 10
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Candidate Approaches

Pros Cons

Smaller set of genes to explore Limited by current state of
Fewer statistical tests knowledge

Results will have solid Limitations of learning completely
interpretations novel biology
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ORIGINAL ARTICLE

Genes and Immunity (2011) 12, 335-340
© 2011 Macmillan Publishers Limited Al rights reserved 1466-4879/11

www.nature.com/gene

A knowledge-driven interaction analysis reveals potential
neurodegenerative mechanism of multiple sclerosis

susceptibility

WS Bush', JL McCauley?, PL DeJager
L Kappos®, Y Naegelin®, CH Polman®

the International Multiple Sclerosis G
'Department of Molecular Physiology and Biophys
*Miami Institute for Human Genomics, Universit
Immunology, Center for Neurologic Diseases, Dey
Boston, MA, USA; *GlaxoSmithKline, Research &
Basel, Switzerland; °®Department of Neurology, Vi

= 930 trio families
" Genotyped on Af
= Post QC ~300,
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Knowledge-Driven Multi-Locus Analysis Reveals Gene-
Gene Interactions Influencing HDL Cholesterol Level in
Two Independent EMR-Linked Biobanks

Stephen D. Turner’, Richard L. Berg?, James G. Linneman?, Peggy L. Peissig?, Dana C. Crawford’,
Joshua C. Denny?, Dan M. Roden®?, Catherine A. McCarty®, Marylyn D. Ritchie', Russell A. Wilke**

1 Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
of America, 2 Biomedical Informatics Research Center, Marshfield Clinic Research Foundation, Marshfield, Wisconsin, United States of America, 3 Department of Biomedical
Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America, 4 Division of Clinical Pharmacology, Department of Medicine,
Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America, 5 Department of Pharmacology, Vanderbilt University School of Medicine,
Nashville, Tennessee, United States of America, 6 Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, Wisconsin, United States of America

= eMERGE Genome-wide association study (lllumina 660)

= Phenotype: median HDL for anyone having 2+ HDL
measurements in their EMR

Marshfield PMRP n=3903
Vanderbilt BioVU n=1858

Marshfield
Clinic @
PENNSTATE Vanderbilt
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Knowledge-Driven Multi-Locus Analysis Reveals Gene-
Gene Interactions Influencing HDL Cholesterol Level in
Two Independent EMR-Linked Biobanks

Stephen D. Turner’, Richard L. Berg?, James G. Linneman?, Peggy L. Peissig?, Dana C. Crawford’,
Joshua C. Denny?, Dan M. Roden®?, Catherine A. McCarty®, Marylyn D. Ritchie', Russell A. Wilke**

1 Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
of America, 2 Biomedical Informatics Research Center, Marshfield Clinic Research Foundation, Marshfield, Wisconsin, United States of America, 3 Department of Biomedical
Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America, 4 Division of Clinical Pharmacology, Department of Medicine,
Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America, 5 Department of Pharmacology, Vanderbilt University School of Medicine,
Nashville, Tennessee, United States of America, 6 Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, Wisconsin, United States of America

)

LIPC

TG>FFA
Peripheral |~ Peripheral

Cell A= LIPG Cell
Lipid ; PL->FFA . Lipid

Source [ ) Destination
LPL

TG>FFA_ |

——

PENNSTATE Hepatobiliary

ﬁ Elimination




Future Directions

Pathway |

2) Map SNPs —> gene
-> pathway using
Biofilter >

N 1) SNPs from GWAS

catalog for a particular
disease-trait association

4) Exhaustive SNP-SNP models

SNP1 — SNP2
3) SNPs from KEGG, SNP1 —SNP3
Reactome, or Netpath > SNP1 - SNP4
linked to SNPs from SNP1 - SNP5
GWAS Catalog in LOKI
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Summary

* Biofilter is a bioinformatics application to
annotate, filter, and construct gene-gene models
for evaluation

We have successfully used Biofilter in a number
of genome-wide interaction analyses to identify
replicating/confirmatory gene-gene models

* The GWAS catalog is an important and useful
public database incorporated into LOKI — the
knowledge base from which Biofilter draws its

information
PENNSTATE




Future Directions

* Integrate more public databases into LOKI
— Regulatory regions
— Non-coding regions

* Develop additional filtering and model
construction strategies based on specific
hypotheses

* Develop a user-interface for ease of use

PENNSTATE




Acknowledgements

Ritchie Lab HDL project - eMERGE
Gretta Armstrong, project manager

Carrie Buchanan Moore, MD/PhD student*
Scott Dudek, software developer

MS project - IMSGC

Alex Frase, software developer*

Molly Hall, PhD student

Neerja Katiyar, PhD student*

Dokyoon Kim PhD, Postdoctoral fellow
Ruowang Li, PhD student

Sarah Pendergrass PhD, Research Associate*
Anurag Verma, Bioinformatics Programmer
Shefali Verma, Bioinformatics Analyst

John Wallace, software developer*
Dan Wolfe, bioinformatics research assistant™ |

PENNSTATE * - working on Biofilter =g




Just because we have not found it
yet, doesn’t mean it’s not there.....

www.genetic-programming.org

e marylyn.ritchie@psu.edu
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