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Gene Therapy (and its obvious appeal.
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Basic tenet: It takes a village.

A confluence of...and synergy between... the
basic and clinical sciences Is needed to
develop a full mechanistic understanding
of a disease process and, in that manner,
to derive novel and rationale therapeutic
strategies.



Hurler Disease Hurler-Scheie Hunter Disease Maroteaux-Lamy

Lysosomal Storage
Diseases (LSDs)

Pompe Disease

Unified by the toxic
accumulation

of lysosomal
substrates due to
lysosomal enzyme
deficiencies.




Complementation in Lysosomal Storage Diseases
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Treatment of Hurler Syndrome (MPS |) with a-l-lduronidase Therapy
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Figure 3. Changes in New York Heart Association (NYHA) Functional Class in Patients with Mucopolysaccharidosis I during α-l-Iduronidase Therapy. The changes in scores were based on information obtained from serial interviews with the patients. New York Heart Association class I indicates no symptoms with ordinary activity; class II, symptoms with ordinary activity and a slight limitation of activity; class III, symptoms with less-than-ordinary activity and marked limitation of activity; and class IV, symptoms with any type of activity or at rest. The difference between pretreatment scores and scores at 52 weeks was significant (P=0.002).


Changes in Liver Size in Patients with Mucopolysaccharidosis | during a-I-lduronidase Therapy.
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Figure 1. Changes in Liver Size in Patients with Mucopolysaccharidosis I during α-l-Iduronidase Therapy. Liver size was measured in terms of volume and expressed as the percentage of body weight, given a density of 1 g per milliliter of tissue. Patient 9 had an episode of hepatitis at 26 weeks that was believed to be due to a concomitantly taken medication and that resolved by week 30. This episode was thought to account for the transient increase in the size of her liver. The upper bounds of the 95 percent confidence interval of normal values (i.e., within the normal range for age, as adapted from the data of Stocker and Dehner23) are 3.5 percent for boys 5 to 12 years of age, 3.2 percent for girls 5 to 12 years of age, 2.2 percent for boys 13 to 17 years of age, 2.7 percent for girls 13 to 17 years of age, 2.6 percent for men 18 years of age or older, and 2.9 percent for women 18 years of age or older.


= Mean Changes in the Restriction of Range of Motion of Shoulder Flexion (Panel A), Elbow
Extension (Panel B), and Knee Extension (Panel C) in Patients with Mucopolysaccharidosis |
during a-lI-Iduronidase Therapy.
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Figure 2. Mean Changes in the Restriction of Range of Motion of Shoulder Flexion (Panel A), Elbow Extension (Panel B), and Knee Extension (Panel C) in Patients with Mucopolysaccharidosis I during α-l-Iduronidase Therapy. The mean degrees of restriction in the range of motion of right- and left-shoulder flexion are not shown for two patients, because shoulder flexion was not evaluated in these two patients at base line. The values represent the difference between the normal maximal range of motion for age and the measured value.


Established and Investigational Therapies for Lysosomal Storage Diseases

Table 1. Established and Investigational Therapies for Lysosomal Storage Diseases.*
Enzyme Replaced
Disease or Targeted Therapeutic Agenty Manufacturer Indication Status of Agent
Commercially available therapies
Gaucher's disease type 1 Glucocerebrosidase Imiglucerase (Cerezyme) Genzyme ERT FDA approved
Gaucher's disease type 1 Glucocerebrosidase Miglustat (Zavesca) Actelion SRT FDA approved
Fabry's disease «-Galactosidase A Agalsidase beta (Fabrazyme) Genzyme ERT FDA approved
Pompe’s disease a-Glucosidase Alglucosidase alfa (Myozyme) Genzyme ERT FDA approved
MPS Il (Hunter’s syndrome) Iduronate-2-sulfatase Idursulfase (Elaprase) Shire ERT FDA approved
MPS VI (Maroteaux—Lamy syndrome) Arylsulfatase B Galsulfase (Naglazyme) BioMarin ERT FDA approved
MPS | (Hurler’s syndrome or the a-L-iduronidase Laronidase (Aldurazyme) BioMarin—Genzyme ERT FDA approved
Hurler—Scheie syndrome)
Gaucher’s disease type 1 Glucocerebrosidase Velaglucerase alfa Shire ERT FDA approved
Investigational therapies
Gaucher’s disease type 1 Glucocerebrosidase Taliglucerase alfa (Uplyso) Protalix ERT In phase 3 study
Gaucher's disease type 1 Glucocerebrosidase Isofagomine tartrate (Plicera) Amicus Pharmacologic In phase 2 study
chaperone
Fabry's disease a-Galactosidase A Migalastat hydrochloride Amicus Pharmacologic In phase 2 study
(Amigal) chaperone
Fabry's disease «-Galactosidase A Agalsidase alfa (Replagal) Shire ERT In phase 3 study
(approved in
EU)
Pompe’s disease a-Glucosidase AT2220 Amicus Pharmacologic In phase 2 study
chaperone
Niemann—Pick disease type C Sphingomyelinase Miglustat (Zavesca) Actelion SRT In phase 2 study
(approved in
EU)
Tay—Sachs disease Hexosaminidase A Miglustat (Zavesca) Actelion SRT In phase 2 study

* ERT denotes enzyme-replacement therapy, EU European Union, FDA Food and Drug Administration, MPS mucopolysaccharidosis, and SRT substrate-reduction therapy.

7 Therapeutic agents are listed by their U.S. adopted name followed by the trade name (if any) in parentheses.

Dietz HC. N Engl J Med 2010;363:852-863
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Table 1 Established and Investigational Therapies for Lysosomal Storage Diseases.


A Patients without anti-IDUA antibodies

Some endogenous enzyme
Promotes “tolerance” to ERT
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The specialized anatomy of the cerebral microvasculature creates a functional
“Blood Brain Barrier” that selectively restricts transport of selected substances from
the circulation into brain tissues...

...Including all enzyme replacement therapeutics.
Excellent utility of ERT in Maroteaux-Lamy (no CNS manifestations)
Limited utility of ERT in Gaucher disease type 2 or 3 (severe CNS manifestations)



Potential Solutions:

- Immunologic tolerance regimens

- Alternative targeting procedures

- Complementary therapeutic regimens that

utilize small molecules capable of crossing
the blood-brain barrier.
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Figure 1 Compensatory and Salvage Mechanisms of Action of Therapeutic Agents. Wild-type protein (Panel A) folds correctly and is properly transported from the site of synthesis (e.g., the endoplasmic reticulum [ER]) to the site of intended function (e.g., the lysosome) and performs its intended function (e.g., the catalysis of hypothetical substrate A to hypothetical metabolite B). Mutant forms of protein (Panels B and C) can fold improperly, leading to failed transport from the site of synthesis, proper transport but impaired catalytic activity, or ER-associated degradation (ERAD). All these events will result in accumulation of substrate, which could initiate events that culminate in disease. Therapeutic gain could result from the use of various types of drugs (red circles). Compensatory effects of therapy (Panel B) include the possibility that drugs (represented by drug 1) can achieve clearance of the substrate by means of alternative mechanisms (substrate-reduction therapy) and other drugs (represented by drug 2) can antagonize pathogenetic events downstream. Salvage effects of therapy (Panel C) include the possibility that any of the three types of drugs can act as pharmacologic chaperones to mediate improvement in the folding of mutant proteins, which could mitigate the phenotypic severity of disease by means of the rescue of transport (by corrector drugs [3]), intrinsic catalytic activity (by potentiator drugs [4]), or stability (by stabilizer drugs [5]).
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Established and Investigational Therapies for Lysosomal Storage Diseases

Table 1. Established and Investigational Therapies for Lysosomal Storage Diseases.*
Enzyme Replaced
Disease or Targeted Therapeutic Agenty Manufacturer Indication Status of Agent
Commercially available therapies
Gaucher's disease type 1 Glucocerebrosidase Imiglucerase (Cerezyme) Genzyme ERT FDA approved
Gaucher's disease type 1 Glucocerebrosidase Miglustat (Zavesca) Actelion SRT FDA approved
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Table 1 Established and Investigational Therapies for Lysosomal Storage Diseases.


Cystic Fibrosis:

Organs Affected by Cystic Fibrosis
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Anatomy of a vulnerable channel (CFTR)
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A public-corporate partnership
between the CF Foundation and
Vertex Pharmaceuticals set its sights
high (but focus narrow).
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Why so narrow?

- The chance of finding a drug that can
address all potential problems in CFTR
biogenesis, trafficking and function is slim.

- By definintion, a drug that “potentiates” the
function of G551D CFTR binds to and
Influences the folding of CFTR. It therefore
might influence the structure and function of
other mutant forms.

- At a minimum, a drug for G551D would
address the ~4% of CF patients who carry at
least one copy of this allele.



Combine deficient cells and an

indicator for desired activity (e.g
fluorescent marker that is activated by
restored chloride conductance).
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A CFTR Potentiator in Patients with Cystic Fibrosis
and the G551D Mutation
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Changes from Baseline through Week 48 in Sweat Chloride, According to Study Group.
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Figure 2 Changes from Baseline through Week 48 in Sweat Chloride, According to Study Group. Panel A shows the mean change from baseline in the concentration of sweat chloride. Panel B shows the actual mean concentrations of sweat chloride over time; the dashed line at 60 mmol per liter represents the cutoff point for the diagnosis of cystic fibrosis. The values and 95% confidence intervals (indicated by I bars) in both panels are unadjusted. The first data points in both panels are baseline data.


Changes from Baseline in Percent of Predicted FEV,, Respiratory Symptoms, and Weight, and
Time to the First Pulmonary Exacerbation, According to Study Group.
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Figure 1 Changes from Baseline in Percent of Predicted FEV1, Respiratory Symptoms, and Weight, and Time to the First Pulmonary Exacerbation, According to Study Group. Panel A shows the absolute mean change from baseline in the percent of predicted forced expiratory volume in 1 second (FEV1), through week 48. Panel B shows the time to the first pulmonary exacerbation, expressed as estimates of the proportion of subjects free from events. Panel C shows the absolute mean change from baseline in the score on the respiratory domain of the Cystic Fibrosis Questionnaire–revised (CFQ-R), a quality-of-life questionnaire that is scored on a 100-point scale, with higher numbers indicating a lower effect of symptoms on the patient's quality of life. The established minimum clinically important difference for the CFQ-R respiratory domain is 4 points. Panel D shows the absolute mean change from baseline in weight, through week 48. The values and the 95% confidence intervals (indicated by I bars) in Panels A, C, and D are unadjusted. The first data points in Panels A, C, and D are baseline data.


Treatment Effect of Ivacaftor with Respect to the Change from Baseline through Week 48 in the
Percent of Predicted FEV,, According to Subgroups.

Table 2. Treatment Effect of Ivacaftor with Respect
to the Change from Baseline through Week 48 in the

Percent of Predicted FEV,, According to Subgroups.* Works I rrespeCtlve Of

Treatment

Effect P Value

Subgroup

Baseline % of predicted FEV,
<70%
=70%

Geographic region

Severity

North America 5 .
— , Location
Australia
Sex
Male <0.001
el Gender
Age
<18 yr 0.005
=18 yr <0.001

Age
* The treatment effect represents the difference between the

ivacaftor group and the placebo group with respect to

the absolute change from baseline through week 48

in the percent of predicted FEV,.
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Table 2 Treatment Effect of Ivacaftor with Respect to the Change from Baseline through Week 48 in the Percent of Predicted FEV1, According to Subgroups.


Adverse Events.

Table 3. Adverse Events.

Placebo Ivacaftor
Adverse Event (N=78) (N=283)

no. of subjects (%)
Any adverse event 78 (100) 82 (99)
Serious adverse event* 33 (42) 20 (24)
Pulmonary exacerbation 26 (33) 11 (13)
Hemoptysis 4 (5) 1:{1)
Hypoglycemia 0 2 (2)

Adverse event leading to study- 5 (6) 11 (13)
drug interruption

Adverse event leading to study- 4 (5) 1 (1)
drug discontinuation

* Included are serious adverse events that occurred in
more than one subject per group.

Ramsey BW et al. N Engl J Med 2011;365:1663-1672
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Table 3 Adverse Events.


Conclusions

 |vacaftor was associated with improvements
In lung function at 2 weeks that were
sustained through 48 weeks.

e Substantial iImprovements were also observed
In the risk of pulmonary exacerbations,

patient-reported respiratory symptoms,
weight, and concentration of sweat chloride.

e |vacaftor was not associated with an
Increased incidence of adverse events when

compared to placebo
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Kalydeco (ivacaftor) — the first and only drug
that Is FDA-approved for the treatment of
cystic fibrosis (in children older than 6 years

with the G551D mutation).

January 31, 2012



Duchenne Muscular Dystrophy  Becker Muscular Dystrophy
(DMD) (BMD)

Diagnosis 4.6 teens
Wheelchair teens adult
Death young adult (onward) 4h-5h decade

Both caused by mutations in the DMD gene encoding dystrophin.
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Dystrophin needs its head and its tail — but
perhaps not all of its middle???
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Pre-mRNA : Intron
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The mechanics of pre-mRNA splicing
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Antisense-mediated exon skipping rationale for DMD
Deletion exon 45

‘ Reading frame disrupted

43444 46 C 47 4

‘ Premature stopcodon

Non functional dystrophin DMD phenOtype

Reading frame restoration for deletions

o T

‘ Exon 46 hidden from splicing machinery

43 | 44 47 4

‘ Reading frame restored

Partially functional dystrophin - BMD phenotype

Dr. Annemieke Aartsma-Rus
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Antisense-mediated exon skipping rationale for DMD. (A) Patients with DMD have mutations which disrupt the open reading frame of the dystrophin pre-mRNA. In this example, exon 50 is deleted, creating an out-of-frame mRNA and leading to the synthesis of a truncated non-functional or unstable dystrophin (left panel). An antisense oligonucleotide directed against exon 51 can induce effective skipping of exon 51 and restore the open reading frame, therefore generating an internally deleted but partly functional dystrophin (right panel). (B) Multi exon-skipping rationale for DMD. The optimal skipping of exons 45–55 leading to the del45–55 artificial dystrophin could transform the DMD phenotype into the asymptomatic or mild BMD phenotype. This multiple exon skipping could theoretically rescue up to 63% of DMD patients with a deletion (126).

mailto:a.m.rus@lumc.nl

B Multi Exon skipping approach

Pre-mRNA Any mutation/deletion between exons45 and 55 disrupting the reading frame
~63% of DMD patients
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Dystrophin expression after local delivery of
antisense oligonucleotide
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Dystrophin expression after systemic delivery of
antisense oligonucleotide
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ogenesis of the Hutchinson-Gilford Progeria

Proposed Path

A

Lamin A

ZMPSTE24

1 recognition site
\

l Position of 1824C—T mutation Aberrant splice

H Globular head missing
Mutant pre—lamin A (progerin) 50 amino acids

Nuclear Blebbing

Endoplasmic-
reticulum
membrane

2 Progerin remains
2 bound to the
membrane

ZMPSTE24 \/
(i CAAX
Cleavage of progerin to yield
Fa erase lamin A cannot occur owing
to lack of ZMPSTE24
W\/\)\ recognition site

Farnesyl group Mature lamin A

Farnesyl Transferase Inhibitor

Dietz HC. N Engl J Med 2010;363:852-863
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Presentation Notes
Figure 2 Proposed Pathogenesis of the Hutchinson–Gilford Progeria Syndrome. The LMNA gene, encoding lamin A (a structural protein of the nuclear membrane), contains 12 exons (Panel A). Normally, spliced pre–messenger RNA (mRNA) results in lamin A that encodes a recognition and cleavage site for the enzyme ZMPSTE24 (red bar) within the C-terminal globular domain (blue oval). The 1824C→T mutation in exon 11 is found in most people with Hutchinson–Gilford progeria syndrome. The mutation activates a cryptic splice donor, causing an abnormal splicing event that removes 150 nucleotides from the mRNA and hence 50 amino acids that span the ZMPSTE24 cleavage site in the C-terminal globular domain. This results in a mutant form of pre–lamin A (progerin) that cannot undergo C-terminal processing. As it does to lamin A, farnesyl transferase (Panel B) adds a farnesyl group to the extreme C-terminal of progerin, at a cysteine residue (indicated with the letter C) within the so-called terminal CAAX motif (with the letter A indicating an aliphatic amino acid; and X, any amino acid). The farnesyl group binds the lamin A or progerin to the membrane of the endoplasmic reticulum at the periphery of the nucleus, where ZMPSTE24 cleaves the three terminal amino acids (AAX) of both proteins; the farnesylated cysteine is then carboxymethylated (i.e., an OCH3 group is added). Lamin A undergoes a second cleavage event by ZMPSTE24, within the C-terminal globular domain, releasing mature lamin A. Progerin remains farnesylated and tethered to the membrane, because the abnormal splicing event has deleted this cleavage site.


FTI treatment causes reversion of the nuclear blebbing in two
different progerin-expressing HGPS human fibroblasts.
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Change in body weight (g)

Change in body weight (g)

Treatment of a Mouse Model of Progeria with a FTI
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Marfan syndrome

Fibrillin-1

z || | |1 OO 11O

Dietz...and Francomano Nature, 1991
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Fibrillin-1 Mutations Lead to Excess TGF| ]Activation in MFS

Excess TGFf3 Excess TGFj Phenotypic

Activation Signaling Consequences
W

Emphysema

Mitral Valve Prolapse
Aortic Aneurysm
Myopathy

Microfibrils composed of

Fibrillin-1 (All rescued by

TGFB-neutralizing
antibody)

Neptune, Nature Genetics, 2003
Judge, JCI, 2004

Ng, JCI, 2004

Habashi, Science, 2006

Cohn, Nature Medicine, 2007
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The lab went on to show that microfibrils nomally bind the latent complex of the cytokine transforming gorwth factor beta, which includes the latent TGFb-binding protein and as well as the mature cytokine. In MFS, a deficiency of microfibrils leads to failure of this event and promiscuous activation of TGFb. This leads to excess TGFb signaling, phosphorylation of R-SMAD proteins affecting of gene expression, leading to many of the phenotypes in MFS: Emphysema, Mitral Valve Prolapse, Aortic Aneurysm, Myopathy And Fat Hypoplasia. Remarkably, all of these are rescued by TGFb antagonism in animal models.
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Canonical TGF[3
Signaling

Noncanonical TGFf3
Signaling (MAPK)




Selective Activation of ERK MAPK In Marfan Mice
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ERK1/2 Antagonist RDEA-119 Arrests
Aortic Root Growth In a Mouse Model of MFS
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Calcium Channel Bloc

ker Trial iIn MFS Mice

2"d line antihypertensive agents in
MFS patients unable to tolerate
B-blockers

Azelnidipine reduces ERK
activation in synergy with
olmesartan in murine arterial
iInjury model (Jinno et al.,
2004)

Amlodipine dose: 15mg/kg/day
Echocardiogram: 2, 6 & 10mo

Doyle and Dietz, unpublished
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In-vivo amlodipine trial: C1039G/+ mice: 20mg/kg/day.
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ERK Inhibitor RDEA-119 Abrogates the Deleterious Gene-by-
Environment Interaction Imposed by Calcium Channel Blockers
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Pessimistic model for disease pathogenesis
W L Fibrillin-1 — Tissue Failure
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A New Aortic Aneurysm Syndrome | -
~ L * ‘lee Marfan syndrome: o
‘ W - curvature of spine

- chest wall deformity
- long fingers

- aortic root aneurysm

Unique:
- widely-spaced eyes - arterial tortuosity
- cleft palate/bifid uvula - diffuse aneurysms
- premature skull fusion - rupture / death
- club foot deformity young age
== - congenital heart disease  small dimensions
(> 200 families) (PDA, BAV, ASD)

_Ni Loeys et al., Nature Genetics, 2005
Loeys-Dietz syndrome (LDS) oo el NEIM 2006



Mutations in the TGFf3 receptor cause Loeys-Dietz syndrome

pSmad2
control

M3ga5  P4ZTL K

TGFERA1

LDS-like conditions also observed in patients
with mutations in the SMAD3 or TGFB2 genes.

Loeys et al., Nature Genetics, 2005; New Engl J Med, 2006; Lindsay et al. Nature, 2011
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Marfan Syndrome (FBN1) The TGFp Vasculopathies
Loeys-Dietz Syndrome (TGFBR1/2) P"‘

Loeys-Dietz-Osteoarthritis Syndrome (SMAD?3)
Loeys-Dietz-like Syndrome (TGFB2)
Recessive Cutis Laxa (FBLN4)

Vascular EDS (COL3A1)

Bicuspid Aortic Valve/Asc AA

Arterial Tortuosity Syndrome (GLUT10)

Familial Thoracic Aortic Aneurysm (MYH11, ACTA2)

These data suggest that altered TGFf3
signaling is a common pathway to
aneurysm formation and that treatments
for MFS may find broad application.




The study of rare Mendelian disorders represents both an
obligation and an opportunity.

The obligation:
- While individually rare, these conditions are personally
burdensome and collectively common.

- Patients with rare genetic disorders have disproportionately fueled
progress in molecular therapeutics, often at real personal cost
despite a remote chance of personal advantage.

The opportunity:
- The single gene basis of the defect implies genes and pathways that
are sufficient to cause diseases of interest and that are therefore
Inherently attractive therapeutic targets.

- Such therapies can then be explored in more common but complex
presentations of the same phenotype.
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