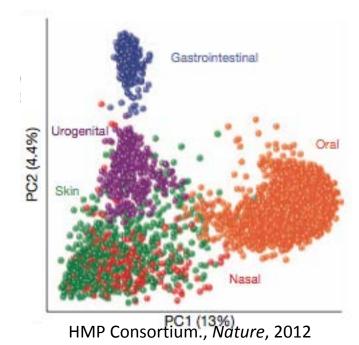


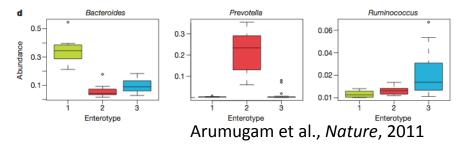
The Interplay between the Gut Microbiota and the Immune System


Claire M. Fraser, PhD Institute for Genome Sciences University of Maryland School of Medicine

> NHGRI Symposium April 25, 2013

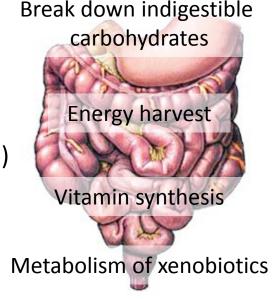
The Microbiota

- 10¹⁴ microorganisms live in association with humans
 - Contain 100-fold more genes than the human genome
 - Concept of a "super-organism": a combination of human genes and the genes of our microbial partners, the microbiome
- Distinct taxa are found across human environment
 - Main phyla include:
 - Bacteroidetes
 - Firmicutes
 - Actinobacteria
 - Proteobacteria
 - At lower taxonomic levels great variation
 - Is seen among individuals

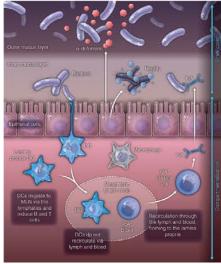


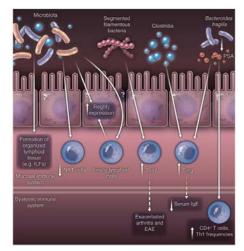
The Gastrointestinal Microbiota

- Diverse community
 - Main phyla: Bacteroidetes, Firmicutes
 - Variation among individuals and over time
- "Core" microbiome
 - What taxa are shared in healthy subjects?
 - Enterotypes: distinct community types present in the human population, each defined by a dominant genus
 - Bacteroides, Ruminococcus, Prevotella


Dethlefsen et al., Nature, 2007

The Gastrointestinal Microbiota: Nutrition and Metabolism


- Host and microbiota have co-evolved
- Microbiome provides essential functions to host
 - Evidence from gnotobiotic mouse models
 (Backhed et al., 2004; Turnbaugh et al., 2009)
- Diet/nutrition can shape the microbiota
 - Microbiome reflection of dietary habits?(Wu et al., 2011; De Filippo et al., 2011)



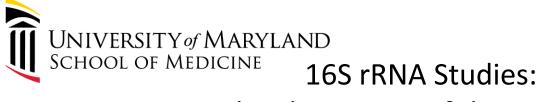
The Gastrointestinal Microbiota and the Immune System

- The immune system shapes the microbiota
 - Mucus layer
 - Antibacterial proteins
 - IgA
- The microbiota impacts immune system development
 - Mucosal immune system:
 - Formation of organized lymphoid tissue
 - Regulation of innate lymphoid cells
 - Systemic immune system:
 - CD4, $T_{reg'}$, T_h 17 cells

Hooper et. al., Science, 2012

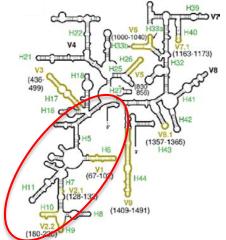
Shigellosis: An Endemic Disease

- Caused by *Shigella*, a mucosally invasive bacterium
 - Bloody diarrhea, fever, stomach cramps
 - Transmitted fecal-oral route
- Restricted to humans and non-human primates
 - Cynomolgus monkeys can serve as an animal model in vaccine development
- Evidence for effective live-attenuated vaccines administered orally (Levine et al., *Nat Rev Micro*, 2007)
 - No approved vaccine, but current vaccine trials are underway
 - Variability in vaccine response observed in different global populations
 - Unknown cause (diet, environment, genetic)
 - Role of gastrointestinal microbiota has not been investigated

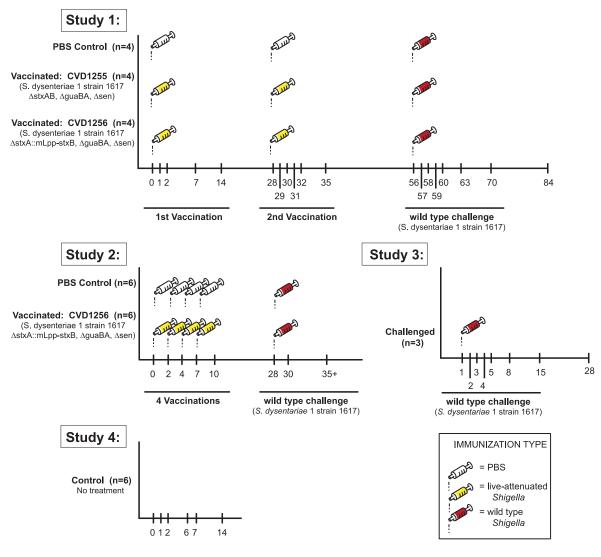


- Oral live-attenuated *Shigella* vaccine trials with cynomolgus monkeys
 - Collect stool samples pre- and post-immunization and after WT challenge
 - Characterize the microbiota post-immunization and post-infection
- How does exposure to an enteric pathogen affect the intestinal microbiota?

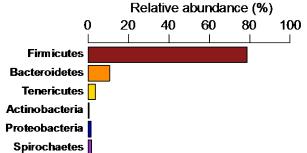
HYPOTHESES:

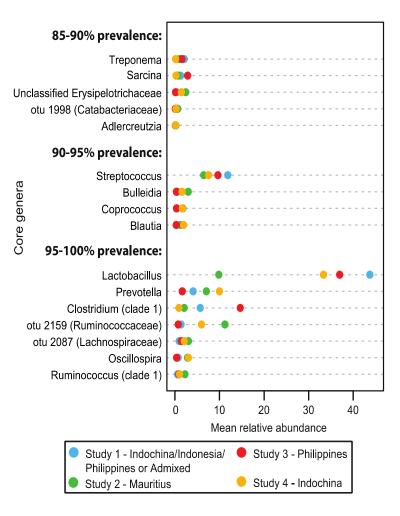

Wild-type and live-attenuated strains of *Shigella* will alter the gastrointestinal microbiota

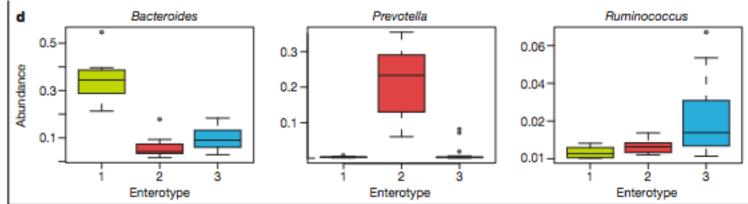
Composition of the intestinal microbiota may affect the outcome following immunization, challenge


Molecular census of the microbiota

- Most of the microbiota cannot be cultured
- High-throughput, multiplex, parallel sequencing and analysis technology has enabled characterization of microbiota
- 16S rRNA Surveys: Use 16S rRNA hypervariable region for bacterial identification
 - Universal gene in prokaryotes
 - Variable regions can be used for assigning taxa and phylogenetic relationships
 - Conserved regions can be used to design universal primers to amplify specific regions




Gary Andersen, Todd DeSantis, Lawrence Berkeley Lab



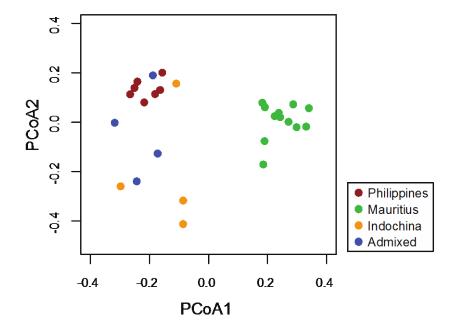
Enterotypes in human GI microbiota

- Identification of enterotypes within humans
 - Limited number of community types within human population, dominated by *Prevotella*, *Bacteroides*, or members of the phylum, Firmicutes
 - Stable over time
- Determined by multidimensional cluster analysis from Jensen-Shannon divergence (measures similarity between probability distributions of genera)

Enterotypes within the cynomolgus monkey microbiota

→ Cluster analysis reveals 4 distinct community profiles

→ Each is characterized by a dominant genera



Genetic diversity in cynomolgus macaques

- Previous studies indicate allelic differences within cynomolgus macaques of different geographic origin (Krebs et al., 2005; Mee et al., 2009; Florese et al. 2009; Mitchell et al. 2012)
 - Indochinese/Indonesian: high level of diversity within MHC regions I and II
 - Mauritian: geographically isolated, restricted genetic diversity in MHC region
- MHC haplotype has been shown to be important in disease susceptibility in cynomolgus macaques (Wiseman et al. 2007; Florese et al., 2009)
- Analysis of non-MHC and MHC genotypes in our cynomolgus macaque population
 - Analyzed 24 short tandem repeats (STRs) to determine geographic origin
 - Analyzed seven microsatellite regions spanning the MHC
 - Determine whether genetic diversity correlated with differences in the microbiota

Determination of macaque geographic origin

Principal Coordinate Analysis



→ Genotype analysis using 24 non-MHC STRs from peripheral blood lymphocytes

 \rightarrow Macaques from Mauritius cluster together

→ Comparison of STR data to macaques of known geographic origin confirmed macaque origin

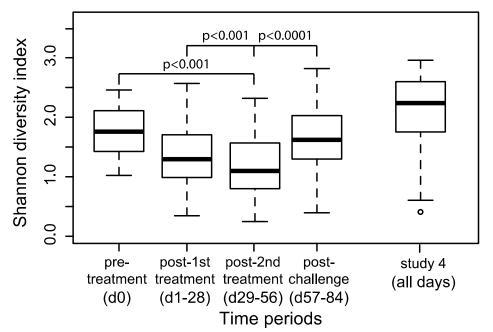
MHC allele repertoire in macaques from different geographic origin

→ Genotype analysis of seven microsatellites spanning MHC region (both class I, class II)

Monkey 24

- \rightarrow Broad range of alleles for regions tested
- ightarrow As with non-MHC alleles, macaques from Mauritius cluster together

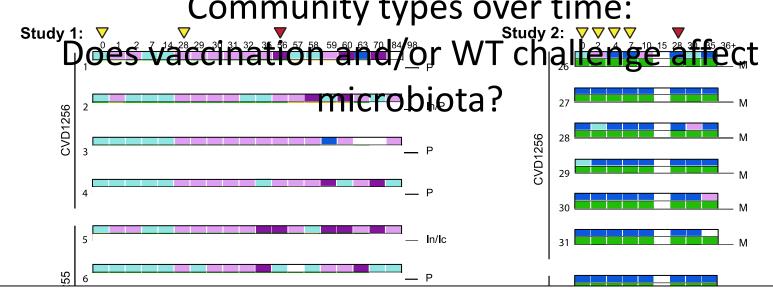
 $\rightarrow\,$ Macaques from Mauritius exhibit unique profile compared to macaques from Indonesia/Indochina/Philippines



Impact of live-attenuated and wild type *S. dysenteriae* 1 strains on microbiota composition

- Does vaccination and/or WT challenge alter microbiota composition?
 - Changes in diversity
 - Changes in community types
 - Clinical and immunological outcome following these events
 - Are observed changes the same for all populations

Measures of diversity: Does vaccination, challenge affect microbiota?


Study 1:

→ Significant change in Shannon diversity index following immunization in study 1 macaques and compared to study 4 macaques (untreated)

→ No change in diversity estimates in study 2 macaques!

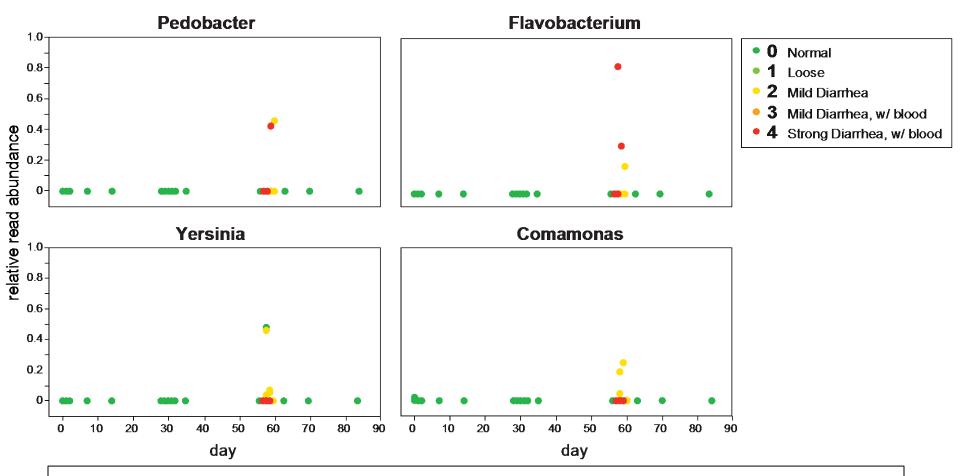
 \rightarrow Differences observed in macaques from study 1 and 2

- → Both vaccination and challenge induce anti-LPS IgA, IgG antibody production (observed in both studies 1 and 2)
- → Difference in community type, clinical response between study 1 and study 2 macaques:
 -- Study 1:
 - -- changes in community type, diversity measures following both vaccination and challenge
 - -- Exhibit clinical symptoms
 - -- Study 2:

15

- -- persistence of initial community type (high diversity)
- --do not exhibit clinical symptoms
- ightarrow Different community types in monkeys of different geographic origin

2	Mild Diarrhea
3	Mild Diarrhea, w/ blood Strong Diarrhea, w/ blood
4	Strong Diarrhea, w/ blood


5-9

>25 No Sample

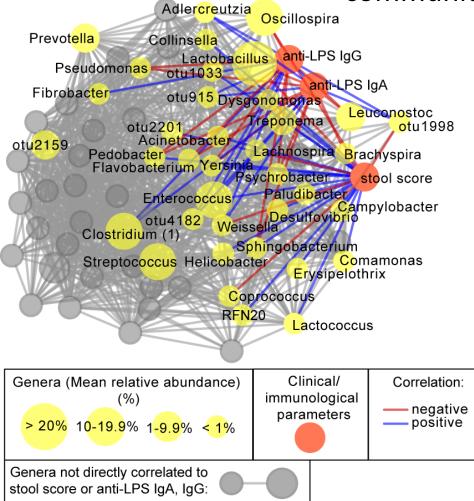
10-24

ble

Increase in normally rare genera is associated with clinical symptoms following challenge

→ Increased abundance of *Pedobacter, Yersinia, Flavobacterium*, and *Comamonas* reads following challenge

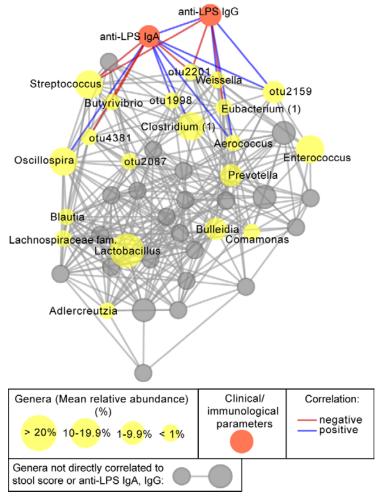
 \rightarrow Only in monkeys that exhibit clinical disease symptoms \rightarrow -- study 1 and 3 macaques (non-Mauritian)



Immune response following immunization and WT challenge

- Both immunization and challenge induce an immune response
 - Observed in both study 1 and 2 macaques
 - However, only study 1 macaques exhibited clinical shigellosis
 - Immune response as measured here not a determinant of protection—so what is?
 - Potential role for microbiota
- Are there correlations between strength, type of response and microbiota?
 - Utilized the statistical model, LSA (Local Similarity Alignment)
 - Time-dependent correlations
 - Used for intra-study comparisons

Correlation between immune responses and the microbiota community over time



Study 1:

- → Dense network of several genera related to anti-LPS IgA, IgG and stool score
 - -- complex relationships
 - between genera
 - -- stool score correlated with
 - many rare genera

Correlation between immune responses and the microbiota community over time

Study 2:

- \rightarrow Less dense network
 - --reflection of high community stability for these macaques
 - -- many observed correlations among core genera
- → Shared correlations among studies: --Weissella
 - --otu2998
 - --Clostridium (clade 1)

→ Differences in vaccine regimen, however, make it difficult to determine how these may be related

- We observe 4 enterotypes within the cynomolgus macaque gastrointestinal microbiota
 - 2 "healthy", 2 "transient"
 - control macaques (study 4) are stable over time
- Different enterotypes are present in macaques of different geographic origin:
 - study 1:
 - Indochinese/Indonesian/Philippine origin
 - post-vaccination: change in community type, diversity
 - post-challenge: change in community type, increase in normally rare organisms
 - exhibited clinical symptoms
 - study 2:
 - Mauritius origin
 - no changes post-vaccination, post-challenge
 - did not exhibit clinical symptoms
 - STR and microsatellite genotypic analysis suggests a unique genotypic profile in Mauritian macaques
- Vaccination and challenge induced immune response in both studies
- Role of genotype in shaping microbiota composition
- High-diversity community type: protective against Shigella
- Need for characterization of the microbiome in future vaccine studies

• Fraser Laboratory:

- Emiley Eloe-Fadrosh
- Brandi Cantarel
- Elliott Drabek
- Will Hsiao
- Cheron Jones
- Shana Cirimotich
- Ryan Foster
- James White
- Arthur Brady

• CVD:

- Aruna Panda
- Marcelo Sztein
- Franklin Toapanta
- Steven Shipley

NIAID: Cooperative Center for Translational Research on Human Immunology and Biodefense U19 AI082655 (CCHI)

• IGS:

- Dave Rasko
- Emmanuel Mongodin