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The original definition of ‘missing 
heritability’
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NB both are estimates that can be biased (up or 
down)

2



My 2009 presentation

• Theory and applications of quantitative genetics: 
heritability, estimation and prediction
• Estimation of heritability using DNA markers:
• Using segregation within families
• Using GWAS data on “unrelated” individuals (unpublished data 

that became Yang et al. 2010 NG)
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Yang et al. 2010 NG: SNP-heritability
• Estimation, not hypothesis testing
• Variance explained by all genotyped SNPs ~ 45% for height
• Contrast 45% with 5% from GWS SNPs (Manolio 2009)
• Larger GWAS sample size à discovery of more GWS loci
• ‘Infinite’ sample size à 45% of variance explained by GWS SNPs; 

prediction R2 à 45%
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Totals
57% for height
27% for BMI
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Robust estimation from imputed variants by accounting for LD and MAF

Yang et al. 2015 (Nature Genetics)



Re-reading Manolio et al. 2009

“Many explanations for this missing heritability have been suggested, 
including

• much larger numbers of variants of smaller effect yet to be found;

• rarer variants (possibly with larger effects) that are poorly detected by 
available genotyping arrays that focus on variants present in 5% or more 
of the population;

• structural variants poorly captured by existing arrays; 

• low power to detect gene–gene interactions; 

• and inadequate accounting for shared environment among relatives.”
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“much larger numbers of variants of 
smaller effect yet to be found”
• Cumulatively, common variants explain ~1/3 to ~2/3 of 

heritability (GREML and LD Score regression methods)
• Much larger numbers of variants have indeed been found 

e.g. 
• from 40 to 3000+ for height 
• 8 to 700+ for BMI
• 0 to 1000+ for educational attainment / IQ
• 1 to 250 for schizophrenia
• 32 to 200 for inflammatory bowel disease
• 18 to 150 for Type 2 diabetes
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“rarer variants (possibly with larger effects)“

• Evidence for natural selection: rare(r) variants associated 
with complex traits have larger effects
• height
• BMI
• disease

• But cumulatively, rare variants contribute a small amount 
of heritability
• T2D
• Height, BMI
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New definitions of ‘heritability’ since 2009…

• Missing
• Phantom
• Pedigree
• SNP
• Hiding
• Genomic
• etc.
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New data since 2009
• GWAS summary statistics
• More and ever-larger GWAS
• Transcriptional and epigenetic resources
• Fully sequenced reference panels
• imputation accuracy down to MAF = 0.5%

• Large single cohort studies, e.g. UK Biobank
• Contributions from commercial companies e.g. 23andMe
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New methods since 2009

• GREML (Yang 2010, 2015 NG; 2011 AJHG)
• LD score regression (Bulik-Sullivan 2015 NG 2x)
• Prediction methods (Purcell 2009 Nature; Zhou-Stephens 

2012 PLOS Genetics, 2013 NG; Moser 2015 PLOS Genetics; 
Turley 2017 NG; Maier 2018 Nat Comms)
• Causal inference (MR, SMR, GSMR, PrediXcan, MetaXcan)
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Mendelian forms of “tallness” and “shortness” 
exist, but most variation is polygenic
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FBN1
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HMGA2

The combination of allele frequency and effect 
size determines the contribution to heritability

[Marouli 2017 Nature]



100 %

70 %

Slide by Loic Yengo 14

Partitioning variance of height 2018

Total variance
Heritability (based on Twin or family studies)
Within-family estimates
SNP heritability from imputation to sequenced reference
SNP-heritability (variance explained by all genotyped SNPs on the Chip)
Variance explained by genome wide significant SNPs

80 %

60 %

45 %

25 %

Prediction R2 is approaching 40%

Variance explained by WGS unknown



Variance explained for BMI

Twin studies
Non-twin family studies
Within-family segregation
Whole-genome imputation
HapMap3 SNPs
GWS loci

70-80%
40-50%
40%
27%
22%
5%
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Difference between within-family and 
population estimates of SNP effects

• Population stratification
• G-E correlation (Nature of Nurture)
• Assortative mating

• Ratio within to population estimates 
• Height ~0.9
• Educational attainment ~0.5

16[Lee Nature Genetics 2018 in press; Kong Science 2018]



Non-additive genetic variance from 
GWAS data
• Few examples from GWS loci
• but loci detected from additive models

• Greater loss of information due to imperfect LD
• r4 vs r2

• Estimation of dominance variance
• 3% from 79 traits on N = 6700 (Zhu 2015 AJHG)
• <1% from 20 traits on N = 350,000 (Rohart 2018 unpublished)

• Lack of power to detect AxA variance
• Confounding with non-genetic effects from family data
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Prediction

• Prediction from DNA sequence (or imputed SNP array) is 
limited by

• how much phenotypic variance is captured by all variants
• how well the effects of all variants are estimated
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Imprecision Medicine
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GWAS 2014

heritability
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Past natural selection determines 
genetic architecture today

20[Eyre-Walker 2010 PNAS; Visscher 2013 Mol Psych]



Evidence for association effect size and 
allele frequency among common variants

21[Marouli 2017 Nature][Yang 2015 Nature Genetics]



Genetic architecture, selection and heritability

22[Zeng et al. 2018 Nature Genetics]



Known unknowns

• Can we recover pedigree heritability from WGS data in a 
random sample from the population?
• How much trait variation is due to structural variation not 

captured by SNP chips and imputation?
• How much heritability is contributed by the X-

chromosome?
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Feasible studies in the near future
• Estimate and partition genetic variation using WGS with 

large sample sizes (> 50,000)
• e.g. TOPMed, others

• Estimate genetic variance due to non-SNP variation
• Estimate genetic variance on the X chromosome
• Large family-based designs (e.g. 100,000 sibpairs; Young-

Kong bioRxiv 2017)
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Conclusions

• Complex traits are highly polygenic and pleiotropic
• Substantial proportion of genetic variance captured by 

SNPs arrays + imputation 
• Not all traits are equal
• Evidence for selection on trait-associated loci
• WGS in combination with large sample sizes will provide 

currently missing information
• Large family studies needed to tease apart between and 

within family effects
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