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Questions:

1. Why do the lead hits for any given trait
contribute so little heritability?

2. Why does so much of the genome contribute
to heritability?




Example #1: Schizophrenia

108 genome-wide significant loci so far
(Ripke 2014)

®
. | Responsible for ~10% of explained variance
27 (Shi...Pasaniuc 2016)
| We have estimated that ~half of all SNPs
-log(p) =

have non-zero association effect sizes (unpub)
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See key work on polygenic models and heritability
by Visscher, Yang, Pasaniuc, Price, and many others




Example #2:
What about a potentially simpler trait: lipid levels?
(LDL, HDL and triglycerides)



Monogenic lipid disorders
~2 dozen major effect loci

High
LDL-C

Low
LDL-C

Familial hypercholesterolemia

Familial defective apolipoprotein B
Autosomal dominant hypercholesterolemia

Autosomal dominant hypercholesterolemia
Autosomal dominant hypercholesterolemia

Autosomal recessive hypercholesterolemia

Cholesterol ester storage disease

Sitosterolemia

Abetalipoproteinemia
Hypobetalipoproteinemia
PCSK9 deficiency with low LDL-C

Familial combined hypolipidemia

LDLR
APOB

PCSK9

STAPI
APOE

LDLRAPI
(ARH)

LIPA

ABCGS/
ABCGS

MTTP
APOB
PCSK9
ANGPTL3

SARIB

Modified from Dron et al 2016




Common Variation: GWAS of Lipid Levels

57 genome-wide significant loci (Willer et al 2013)

HDL cholesterol
HDGF-PMVK, ANGPTL1,

The significant loci only explain ~20%
of heritability of LDL

All loci together explain about ~80%
(Shi...Pasaniuc 2016)

LCAT, CMIF, STARDS, ABCAD,
PGS1, MC4R, ANGPTL4,
ANGPTLS, LILRA3,

UBE2L3

10 loci:

RSPO3, FTO,
VEGFA, PEPD,
GALNT2, IRS1,

PLTP, MLXIPL, LPL,
LRP1

Triglycerides

MET, AKR1C4,
PDXDC1, MPP3, INSR,
MSL2L1, KLHLS,
MAP3K1, TYW1B,
PINX1, JMJD1C,
CYP26A1, CAPN3,
FRMDS, CTF1, PLA2G6

Total cholesterol

ASAP3, ABCB11, FAM117B,
PXK, KCNK17, HBS1L,
GPR146, VIM-CUBN,
PHLDB1, PHC1-A2ML1,
TOM1, EVI5, RAB3GAP1,
RAF1, C6orf106, SPTY2D1,
MAMSTR, ERGIC3

36 loci :

INSIG2, LOC84931,
CMTM6, CSNK1G3, SOX17,

Monogenic genes for LDL

CSK
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LDLRAPI
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LDL cholesterol

ANXAQ-CERS2, EHBP1,

NYNRIN

BRCA2, FN1, APOH-PRXCA,
SPTLC3, SNX5, MTMRS3,
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Modified from: Willer et al 2013,
Dron et al 2016



For a wide variety of traits and diseases:

Heritability is spread extremely widely across the genome

Genes with trait-relevant functions only contribute a small
fraction of the total disease risk

Low frequency-large effect variants often have clearer
enrichment in relevant gene sets

Contributing variants are highly concentrated in regions
that are active chromatin in relevant tissues
(Implies that most effects mediated through gene regulation)



So how should we conceptualize the molecular
links from genetic variation to complex traits?



Our model to describe the data:
The “omnigenic” model

3 types of genes:

e Tier 1: Core genes: direct roles in disease

* Tier 2: Peripheral genes: essentially all other expressed genes
can trans-regulate core genes

* Tier 3: Genes not expressed in the “right” cell types do not
contribute to heritability

Most phenotypic variance is due to regulatory variation in
peripheral genes




Hypothesis: Peripheral genes outnumber core genes by
~100:1, and likely dominate the phenotypic variance through
weak effects rippling through gene networks

& Y %




cis and trans regulation of core genes
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cis and trans regulation of core genes
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cis and trans regulation of core genes

Trans effects
[peripheral genes] \\
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Literature review: genetic variance in gene expression

(Percent h? in trag

\_

Tissue/organism Method Reference
88% lymphoblastoid African-European ancestry Price 2008
76%, 61% Drosophila, whole body fly hybrids McManus 2010
76%, 63% adipose, blood cis/trans IBD in families Price 2011
70%, 65%, 64% adipose, LCL, skin twin design Grundberg 2012
7%, 69% peripheral blood twin design, LD Score Wright 2014
72% yeast segregants cis vs. trans eQQTLs Albert 2017
62% mouse liver GCTA Our group, In Prep
72% mouse liver (protein) GCTA Our group, In Prep

J

~70% in trans




cis and trans regulation of core genes
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But trans eQTLs have very small effect sizes
compared to cis



Distribution of cis vs trans effect sizes

Effect sizes of SNPs

on expression § - _
(|Z] scores) ) / cis-eQTL

trans-eQTL

This difference is even
more dramatic for
(effect size)?

| I I I I I
0 2000 4000 6000 8000
Distribution of effect sizes for top hits, cis and trans

Xuanyao Liu, unpub’d.
Plot shows replication effect sizes of strongest
cis and trans signals from NTR into DGN




Together these observations imply that a typical gene
must have huge numbers of weak trans-regulators
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Xuanyao Liu, unpub’d




Together these observations imply that a typical gene
must have huge numbers of weak trans-regulators

~70% of variance in trans

<7 i ///*+ | So assuming > tens of core genes,
\\ // this model explains why such a large

(\ Cis fraction of the genome can
T - contribute to any given complex

) 4 \N . trait

Xuanyao Liu, unpub’d




One last question: why do core genes contribute so
little heritability to any given trait?



A simple phenotype model based on expression of core genes

Phenotype in Sum over M
individual i core genes

v: mean effect of expression
of gene j on phenotype

/ €: Random
M / error
Z lw —Tj) + €

J

!
Expression of genejin

individual i minus mean

Average
phenotype



M
Y= ¥+ 3 5oy —75) + 6

j=1
Expression variance:
~1/3 cis, 2/3 trans.
M of these terms
Phenotypic
variance
r—*—\ M \
2"
Var(Y Z Y; Var(x;)
=1
M
+ Z Y57k C ov(\ . X. k) + Var(e)
17k ‘

Expression covariance:
Dominated by trans effects
(peripheral genes)
Nearly M? of these terms




Two versions of core gene model yield divergent predictions

Model 1:

_ . Var(Y Z /2Var (x5)
Expression covariances of core genes low N

+ Z vivkCov(x;, xp,)
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Phenotype

Core genes < ~30% of expression

T variance in cis
Peripheral m

~ 0 .
genes ——— —— 70/: of expression
variance In trans
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~30% of heritability cis to core genes




Two versions of core gene model yield divergent predictions

Model 2:

M
Var(Y) = Y ~2?Var(z; . . .
ar(Y) Z /7 Var(z;) Expression covariances of core genes high

Jj=1 M
+ > v wCov(a;, zk)
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Trans effects often shared
across core genes \ T
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Most of the heritability
transferred to peripheral genes




Conclusions (1)

Boyle, Li & Pritchard
Cell 2017

We propose that gene regulatory networks are sufficiently

interconnected that

* all genes expressed in disease-relevant cells are liable to affect the

functions of core disease-related genes

* most heritability is due to SNPs outside core pathways.

We refer to this hypothesis as an “omnigenic’”’ model.

1,000 SNP bin

Median effect, genomewide

significant SNPs: 1.43mm
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Median effect,
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Mean effect size in HRS (mm)
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GIANT p-value




Boyle, Li & Pritchard
Cell 2017

Conclusions (2)

This model is consistent with known properties of cis- and trans-eQTLs
* trans-variation is responsible for ~70% of expression heritability
e But effect sizes are nearly uniformly tiny

 Co-regulated gene networks act as amplifiers for peripheral variation
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] Yang Li Xuanyao Liu

Lab Reunion 2016

Thanks to many colleagues for great
discussions; NIH & HHMI for funding.

We have a draft in prep on the new
work (goal: end of May). Please email
me if you would like a pre-preprint
pritch@stanford.edu






Conclusions (3)

Gene-mapping serves two main goals
* Genetic prediction
For this, GWAS is essential

e |dentification of core genes and pathways

Boyle, Li & Pritchard
Cell 2017

Some combination of deep exome sequencing to find rare variants
with large effects with more GWAS + methods for network inference

Importance of studying long-range network effects of variation
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