Omnigenic architecture of human complex traits

Jonathan Pritchard

Departments of Genetics & Biology, & HHMI Stanford University Joint work with Evan Boyle, Yang Li, Xuanyao Liu

Missing Heritability Workshop, NIH, May 2018

Questions:

1. Why do the <u>lead hits</u> for any given trait contribute <u>so little</u> heritability?

2. Why does <u>so much</u> of the genome contribute to heritability?

Example #1: Schizophrenia

See key work on polygenic models and heritability by Visscher, Yang, Pasaniuc, Price, and many others

Example #2: What about a potentially simpler trait: lipid levels? (LDL, HDL and triglycerides)

Monogenic lipid disorders ~2 dozen major effect loci

High	Familial hypercholesterolemia	LDLR
LDL-C	Familial defective apolipoprotein B	APOB
	Autosomal dominant hypercholesterolemia	PCSK9
	Autosomal dominant hypercholesterolemia	STAP1
		APOE
	Autosomal dominant hypercholesterolemia	LDLRAP1
	Autosomal recessive hypercholesterolemia	(ARH)
		LIPA
Low LDL-C	Cholesterol ester storage disease	ABCG5/
	Sitosterolemia Abetalipoproteinemia Hypobetalipoproteinemia	ABCG8
		MTTP
		APOB
		PCSK9
		ANGPTL3
	PCSK9 deficiency with low LDL-C	
	Familial combined hypolipidemia	SAR1B

Common Variation: GWAS of Lipid Levels

57 genome-wide significant loci (Willer et al 2013)

For a wide variety of traits and diseases:

- Heritability is spread extremely widely across the genome
- Genes with trait-relevant functions only contribute a small fraction of the total disease risk
- Low frequency-large effect variants often have clearer enrichment in relevant gene sets
- Contributing variants are highly concentrated in regions that are active chromatin in relevant tissues
 (Implies that most effects mediated through gene regulation)

So how should we conceptualize the molecular links from genetic variation to complex traits?

Our model to describe the data: The *"omnigenic"* model

3 types of genes:

- Tier 1: <u>Core genes:</u> direct roles in disease
- Tier 2: <u>Peripheral genes</u>: essentially all other expressed genes can trans-regulate core genes
- Tier 3: <u>Genes not expressed</u> in the "right" cell types do not contribute to heritability

Most phenotypic variance is due to regulatory variation in peripheral genes

<u>Hypothesis</u>: Peripheral genes outnumber core genes by ~100:1, and likely dominate the phenotypic variance through weak effects rippling through gene networks

How much of expression variance is due to *cis* vs *trans* effects?

Literature review: genetic variance in gene expression

Percent h^2 in trans	$\mathbf{Tissue}/\mathbf{organism}$	Method	Reference
88%76%, 61% 76%, 63%	lymphoblastoid Drosophila, whole body adipose, blood	African-European ancestry fly hybrids cis/trans IBD in families	Price 2008 McManus 2010 Price 2011
$egin{array}{c} 70\%,65\%,64\%\ 77\%,69\%\ 72\%\ 62\%\ 72\%\ 72\%\end{array}$	adipose, LCL, skin peripheral blood yeast segregants mouse liver mouse liver (protein)	twin design twin design, LD Score cis vs. trans eQTLs GCTA GCTA	Grundberg 2012 Wright 2014 Albert 2017 Our group, In Prep Our group, In Prep

~70% in trans

But trans eQTLs have very small effect sizes compared to cis

Distribution of cis vs trans effect sizes

Xuanyao Liu, unpub'd. Plot shows replication effect sizes of strongest cis and trans signals from NTR into DGN Together these observations imply that a typical gene must have huge numbers of weak *trans*-regulators

Cis associations much bigger than trans

Xuanyao Liu, unpub'd

Together these observations imply that a typical gene must have huge numbers of weak *trans*-regulators

~70% of variance in *trans*

So assuming > tens of core genes, this model explains why such a large fraction of the genome can contribute to any given complex trait

Xuanyao Liu, unpub'd

One last question: why do core genes contribute so little heritability to any given trait?

A simple phenotype model based on expression of core genes

Two versions of core gene model yield divergent predictions

Two versions of core gene model yield divergent predictions

Most of the heritability transferred to peripheral genes

Conclusions (1)

We propose that gene regulatory networks are sufficiently interconnected that

- all genes expressed in disease-relevant cells are liable to affect the functions of core disease-related genes
- most heritability is due to SNPs outside core pathways.

We refer to this hypothesis as an "<u>omnigenic</u>" model.

Conclusions (2)

This model is consistent with known properties of *cis*- and *trans*-eQTLs

- *trans*-variation is responsible for ~70% of expression heritability
- But effect sizes are nearly uniformly tiny
- <u>Co-regulated gene networks act as amplifiers for peripheral variation</u>

Evan Boyle

Yang Li

Xuanyao Liu

Thanks to many colleagues for great discussions; NIH & HHMI for funding.

We have a draft in prep on the new work (goal: end of May). Please email me if you would like a pre-preprint pritch@stanford.edu

Lab Reunion 2016

Conclusions (3)

Gene-mapping serves two main goals

- <u>Genetic prediction</u>
 For this, GWAS is essential
- <u>Identification of core genes and pathways</u>
 Some combination of deep exome sequencing to find rare variants with large effects with more GWAS + methods for network inference

Importance of studying long-range network effects of variation

