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Motivation and introduction

How can we use gene expression and epigenetics 
to help us understand complex trait genetics?

A
SNP

Majority of trait-associated 
variation is non-coding. 

Common hypothesis is that 
most of these function by 
altering gene expression.



Motivation and introduction

Using expression and epigenetic data to inform 
missing heritability:

• Quantify contribution of this important 
component of trait heritability?

• Explain mechanism?

• Increase power to detect trait-associated variants 
(or build good predictors)?



1. Genetics of gene expression



Genetic variants affect gene expression
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eQTL (expression Quantitative Trait Locus) analysis:
Association between genotype and RNA expression levels



Cis-eQTLs have now been identified for 
nearly every human gene, with 
numerous large studies available
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Large-scale eQTL analyses

• DGN: 922 whole blood RNA-seq

• GEUVADIS: 462 LCL RNA-seq

• MUTHER: 850, several tissues, microarray and later 
RNA-seq

• Wright et al, 2014: 2,752 twins, whole blood microarray

• Westra et al, 2013: meta-analysis of 5,311 whole blood 
microarray samples



GTEx Project

44 tissues

449 individuals (RNA-seq + genotype)116 individuals (WGS)

GTEx Consortium v6p data
• 449 genotyped donors

• 7051 gene expression samples

• 42 post-mortem tissues

• 31 solid-organ tissues

• 10 brain subregions

The GTEx Consortium, Nature 2017



Genetic effects across human tissues
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Anterior cingulate cortex (BA24)
938 / 0 (n=72)

Caudate nucleus (basal ganglia)
1967 / 0 (n=100)

Cerebellar hemisphere
2557 / 0 (n=89)

Cerebellum
3454 / 0 (n=103)

Cortex
2086 / 0 (n=96)

Frontal Cortex (BA9)
1588 / 0 (n=92)
Hippocampus
853 / 0 (n=81)

Hypothalamus
879 / 0 (n=81)

Nucleus accumbens (basal ganglia)
1617 / 0 (n=93)

Putamen (basal ganglia)
1238 / 3 (n=82)

Breast Mammary Tissue
3271 / 0 (n=183)

Coronary Artery
1882 / 0 (n=118)

Left Ventricle
3855 / 0 (n=190)

Esophagus Muscularis
5731 / 0 (n=218)

Gastroesophageal Junction
2237 / 0 (n=127)

Thyroid
7976 / 21

(n=278)

Esophagus Mucosa
6169 / 3 (n=241)

Atrial Appendage
3284 / 0 (n=159)

Aorta
5162 / 1 (n=197)

Lung
5884 / 2 (n=278)

Spleen
2163 / 0 (n=89)

Sigmoid Colon
2269 / 0 (n=124)

Testis
6796 / 35 (n=157)

Skeletal Muscle
6049 / 9 (n=361)

Not sun exposed skin (suprapubic)
4499 / 1 (n=196)

Sun exposed skin (lower leg)
7109 / 6 (n=302)

Transformed fibroblasts
7513 / 1 (n=272)
EBV-Transformed lymphocytes
2360 / 0 (n=114)

Ovaries
1167 / 0 (n=85)

Transverse Colon
3723 / 2 (n=169)

Pancreas
3621 / 2 (n=149)

Subcutaneous Adipose
6963 / 2 (n=298)

Liver
1231 / 0 (n=97)

Stomach
2938 / 0 (n=170)

Pituitary
1607 / 0 (n=87)

Brain

Tibial Artery
6736 / 0 (n=285)

Tibial Nerve
8087 / 0 (n=256)

Adrenal Gland
2693 / 1 (n=126)

Visceral Omentum
3571 / 0 (n=185)

Small Intestine Terminal Ileum
1002 / 0 (n=77)

Prostate
1045 / 0 (n=87)

Vagina
582 / 4 (n=79)

Whole Blood
5862 / 1 (n=338)

Uterus
655 / 0 (n=70)

Total unique eGenes
cis: 19725 (FDR 5%)
trans: 93 (FDR 10%)

The GTEx Consortium, Nature 2017

Total unique eQTL genes:
Cis: 19,725 (FDR 5%)
Trans: 93 (FDR 10%)

Most cis per tissue:
8,087 Tibial nerve (N=256)

Most trans per tissue:
35 Testis (N=157)



Characterizing eQTLs across tissues
• Cis-eQTL variants fall in tissue-specific regulatory 

elements (from Roadmap Epigenomics)

The GTEx Consortium, Nature 2017
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Trans-eQTLs
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Anterior cingulate cortex (BA24)
938 / 0 (n=72)

Caudate nucleus (basal ganglia)
1967 / 0 (n=100)

Cerebellar hemisphere
2557 / 0 (n=89)
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Studies report wildly different # hits (10s–10000s)
Replication and validation remains poor
We remain underpowered at current sample sizes

GTEx

Large studies:

Westra et al (N=5,311, using 
GWAS variants only)
ALSPAC (N=869)
MUTHER (N=850)
DGN (N=922)
Framingham (N=5257)



Challenges for trans-eQTL detection

• Power
• False positives from many sources e.g. over and 

under correcting confounders (Dahl et al, 2017)
• Mapping error (similar to probe cross-hybrid.)Filter'out'cross'mapping'pairs

incorrect'mapping
False'positive''
trans'eQTL

34%'genes'have'ambiguous'mapping''
with'the'variants’'nearby'genes''
in'pairs'with'pvalue'<'1e@5'in'adipose'subcutaneous

True positive cis-eQTL

Slide adapted from Yuan He 



Heritability of gene expression
Despite eQTLs being pervasive, estimates for heritability 
of gene expression are modest

• Average over genes ranging from 0.09 to 0.3 (Price et al, 2008/2011, Wright et al 
2014, Wheeler et al 2016, MUTHER)

• Informs need for greater power to detect trans-eQTLs
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(Supplementary Table 4). GWAS phenotypes 
included ones relevant to blood and immu-
nity along with the central nervous system, 
the bowel, cancers and morphological traits. 
Given that GWAS genes were designated 
only on the basis of proximity to NHGRI-
listed SNPs, these results may reflect an even 
stronger true tendency of disease-causing 
genes to be highly heritable (Supplementary 
Fig. 2). These results are complementary to 
observations that disease-associated SNPs 
show eQTL enrichment6. Additionally, 
the Online Mendelian Inheritance in Man 
(OMIM) database shows similar heritability enrichment, even though 
NHGRI GWAS and OMIM only partly overlap (of genes in either 
list, 10% are in both). The OMIM genes with significant heritability  
(q < 0.05) are also quite diverse, further supporting the potential  
relevance of peripheral blood to other tissues and developmental processes  
(Supplementary Table 5). Moreover, evolutionary associations are 
consistent with the observation that heritability is necessary for 
responsiveness to selection45.

We emphasize that these results do not imply causality, and, in 
particular, disease associations should be interpreted with caution. 
Enrichment of disease-associated heritability may reflect other under-
lying sources of commonality but still point to transcription as an 
important intermediary in disease risk.

Local genetic contributions and bias in h2 estimation
After genotyping quality control and imputation, 8.3 million SNPs were 
available for eQTL mapping in 2,494 individual twins (90.4% of the 
expression data set). We evaluated multiple predictors of heritability, 
including association r2 values based on the most significant local 
SNP within 1 Mb, r2 values for the top distant SNP, local SNP her-
itability estimation based on genetic relatedness among unrelated 
subjects using Genome-wide Complex Trait Analysis (GCTA)46 and 
variance-component results from complete local identity-by-descent 
inference among the dizygotic pairs (local IBD). We computed ratios 
of each component to the overall h2 estimate (Supplementary Fig. 3). 
Mean and median values for r hlocal SNP

2 / 2 (0.04 and 0.09, respectively) 
were similar to those reported in the MuTHER study8, whereas the 
h hlocal IBD
2 / 2  ratio was higher (median = 0.11, mean = 0.30), consistent 

with higher explained variation when the total local contribution was 

considered. However, in published studies, estimates have been com-
plicated by bias and variability in h2 estimation. MuTHER reported 
mean h2 values in expressed genes of 0.16 (skin), 0.21 (LCLs) and 0.26 
(adipose), with >20% of expressed genes displaying h2 > 0.3 (ref. 8). 
Our study, although much larger, produced lower values of 0.14 and 
12.3%. Each of our h2 estimates  should be unbiased, as we allowed 
for negative estimates (even if h2  0), whereas variance-component 
methods8 can produce bias by forcing estimates to be non-negative, 
and sampling variability further complicates the view.

To more definitively assess the true extent of transcriptomic herit-
ability for our study, we modeled true h2 values as following a gamma 
distribution, with sampling variation determined by the ACE model. 
The result (Fig. 3a) was a shrunken distribution with a similar mean 
h2 value but markedly less variation. The model estimated that the 
true proportion of expressed genes with heritability of >0.3 was actu-
ally only 7.9%. With high heritability thresholds, differing results 
across studies can appear dramatic—whereas the MuTHER report 
estimated >700 expressed genes in both skin and LCLs with herit-
ability of >0.5, we estimate the true number in our study as ~100. 
The studies differed in tissue type and platform (the MuTHER study 
used the Illumina HT-12 BeadChip platform), NTR mean age was 
~20 years younger and the NTR samples included both sexes. Results 
when age was removed as a covariate (Supplementary Note) sug-
gested that it was not an important heritability determinant in NTR. 
However, the important effect of sampling variation has not been fully 
explored. First, we assessed the gamma fit by artificially adding sam-
pling error to the true distribution, showing that it fit our estimated 
h2 distribution (Fig. 3a). A similar approach quantified the impact 
of sample size (Supplementary Note), again using the gamma model 
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Figure 1 Transcriptome-wide estimates of 
heritability based on 2,752 twins. (a) Manhattan 
plot of heritability P values for the transcript with 
the highest h2 estimate for each of 18,392 genes. 
The inset (PADI2) shows that the evidence for 
heritability is based on higher correlation between 
monozygotic pairs (MZ) than between dizygotic 
pairs (DZ). The dashed line marks the threshold 
for genes with q < 0.05. (b) Clustering of 777 
genes with q < 0.05 for h2 estimates. The most 
heritable genes belong to the cluster with the 
lowest intergene correlation, but many significant 
genes belong to clusters with high intergene 
correlation. (c) Among 43,628 transcripts, the 
significant proportion (in terms of FDR q value) 
is dependent on mean transcript expression, 
increasing rapidly for transcripts above an 
approximate detection threshold (RMA expression 
3.584, determined as the 90th percentile of 

chromosome Y RMA ‘expression’ in females).
Figure from Wright et al NG 2014



Heritability of gene expression
• Trans effects contribute much more to gene expression 

heritability than cis

• h2cis/ h2 estimates range from 10-40%
– Price et al 2011
– Wright et al 2014
– Grundberg et al 2012

• Varies by tissue, population, power, method

• h2cis sparse (Wheeler et al 2016), trans often mediated 
by cis effects



2. Connecting expression and 
epigenetics to complex traits



Help interpret GWAS variants (especially non-coding): 
• understand mechanism
• guide interventions
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Help interpret GWAS variants (especially non-coding): 
• understand mechanism
• guide interventions
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Most SNPs are eQTLs
92.74% SNPs with
p−value < 0.05

48.45% SNPs with
p−value < 0.05/44
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eQTLs and complex disease genetics

~50% of genetic variants associated with human 
disease co-localize with an eQTL 
• compared to 92% simply associated p < 0.05/44 (still enriched over background)
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Deciphering mechanism

53% of co-localized GWAS loci have > 1 target gene, 
ambiguity remains 
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eQTL data informs heritability
GE co-score regression indicates cis-eQTLs explain mean 
21% of h2 across a set of complex traits 

O’Connor et al. bioRxiv, 2017 
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Figure 2: Estimates of the proportion of trait heritability mediated by the cis-genetic compo-
nent of assayed gene expression for 30 diseases and complex traits. Related traits are grouped,
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merical results are reported in Table 1.
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Epigenetic data

ENCODE Project Consortium. Plos Biology 2011.

• ENCODE, Roadmap 
Epigenomics

• Regulatory elements:
promoters, 
enhancers

• Transcription factor 
binding sites

• CpG sites
• ChromHMM



LD score regression, related approaches partition h2

Large scale epigenetic data (Roadmap, ENCODE) enable 
analysis, indicate contribution of gene regulation 

Epigenetic data informs heritability

Figure from Finucane, NG, 2015 



Ommigenic model

• Most/all expressed genes in disease-relevant cell 
types affect trait

• Highlights potential role of eQTLs, trans effects

traits including height, BMI, and infant birth size (Turchin et al.,
2012; Field et al., 2016).
We anticipate that many of the more dramatic phenotypic dif-

ferences seen between species are also driven by an accumula-
tion of tiny effects and that larger-effect differences are likely to
be exceptions to the rule. For example, there are!40 million sin-
gle-nucleotide differences between humans and chimpanzees. If
1% of these affect chromatin function or other aspects of regu-
lation, then there could easily be a half-million differences be-
tween the two species with small but nonzero effects on pheno-
types (these need not all be adaptive), and these would likely
dominate the contributions of a handful of large-effect loci.
Turning to the within-species level, one important open ques-

tion is whether pleiotropic effects limit how many traits can be
selected for at once. As described above, pleiotropy is likely
ubiquitous in the genome. Thismay place constraints on the abil-
ity of selection to shift allele frequencies, as a change in the fre-
quency of one variant must be balanced by changes at other
sites. Does this effectively limit the number of independent poly-
genic traits that can be simultaneously selected? There has been
previous consideration of the extent to which pleiotropy shapes

Figure 4. An Omnigenic Model of Complex
Traits
(A) For any given disease phenotype, a limited
number of genes have direct effects on disease
risk. However, by the small world property of
networks, most expressed genes are only a few
steps from the nearest core gene and thus may
have non-zero effects on disease. Since core
genes only constitute a tiny fraction of all genes,
most heritability comes from genes with indirect
effects.
(B) Diseases are generally associated with
dysfunction of specific tissues; genetic variants
are only relevant if they perturb gene expression
(and hence network state) in those tissues. For
traits that are mediated through multiple cell
types or tissues, the overall effect size of any
given SNP would be a weighted average of its
effects in each cell type.

variation and adaptation (Barton, 1990;
Walsh and Blows, 2009), but we believe
this area is ripe for further exploration in
the light of modern data.

Future Directions
Huge numbers of genes contribute to the
heritability for complex diseases. This
fact raises fundamental questions about
how genetic variation perturbs genetic
systems to produce phenotypes. We
have proposed one possible model, and
it will be important to test this and
perhaps others. There are deep chal-
lenges to fully understanding the impact
of very small effects in organismal sys-
tems, so we believe there is great need
to develop cell-based model systems
that can recapitulate aspects of complex

traits. Furthermore, we still have limited understanding of
cellular networks, and it will be important to develop highly pre-
cise, high-throughput techniques for mapping networks in
diverse cell types, especially at the protein level. We suggest
the following key questions and tests of the omnigenic model:

d For a variety of representative traits: How many distinct
variants and how many genes contribute causal variation?
What fraction of this variation is in non-core genes? Which
traits are closer to (or further from) the omnigenic extreme?

d Are there variants that affect expression in the cell types
that drive a particular disease but have no effect on disease
risk? While traits vary in terms of the importance of the
largest-effect variants, the strongest form of the omnigenic
model predicts that essentially all regulatory variants active
in relevant cell types would contribute non-zero effects.

d If most genetic variants act through cellular networks,
then what mediates these connections? Transcriptional
regulation, post-translational modification, protein-
protein interaction, and intercellular signaling may all
contribute. What is the nature and frequency of long-range

Cell 169, June 15, 2017 1183
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3. Complex effects of genetic variation 
on gene expression



What are we missing?

• Most studies are done on steady-state total 
expression measurements at a single adult or 
post-mortem time point

• Disease-relevant states include different 
developmental stages, environmental 
exposures, cell types

• Other variant classes and regulatory effects



Context-specificity

Many factors can modulate regulatory effects

Epigenetic changes

Altered transcription factor abundance



GTEx tissue-specificity of cis and trans

Trans eQTLs appear more highly tissue-specific than cis-eQTLs

The GTEx Consortium, Nature 2017



Tissue specificity and heritability

From Finucane et al, NG, 2018



Detecting context-specific QTLs
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Many other contexts beyond 
tissue:
• Recent work explores QTLs in 

diverse environments, such 
as infection response
• Fairfax et al, Science 2014
• Lee, Science 2014

• Methods for identifying 
allelic response from RNA-
seq data



Diverse variants and readouts
• Diverse genetic variant classes, enabled by 

improved variant calling and methods
– Structural variants
– Repeats

• Diverse molecular phenotypes important to h2:
– Alternative splicing (Li et al, Science 2016)
– Translation, protein abundance (Wu et al, 2013 and 

Battle et al,2015)
– Epigenetic changes including chromatin accessibility, 

histone modifications, methylation, etc (McVicker
2013, Grubert 2015, Banovich 2014…)



4. Further possibilities



Detecting more?

Can expression and epigenetic data help detect 
more variants or explain more heritability?

Pickrell, 2014 

New methods integrate diverse data to 
learn and apply priors to GWAS analysis 
and prediction scores

• Pickrell AJHG 2014 estimates 5% 
increase in loci detectable

• Marigorta NG 2017



Rare variants

Recent work emphasizes importance of rare 
variation in driving extreme expression levels

Li et al, Nature, 2017



Rare variants

Preprint (Hernandez et al 2017) suggests rare 
variants explain a large fraction of heritability of 
gene expression

ed by those alleles that are actually 

singletons across all 2504 samples 

in TGP (MAF<0.02%; Fig 2C). 

Pushing this result further, we par-

titioned our singletons based on the 

global frequency observed in 

>15,000 individuals in the gno-

mAD data set (32). We found that 

31% of our singletons were not re-

ported in gnomAD, despite the fact 

that all TGP samples are included 

in gnomAD. While this could indi-

cate that a large fraction of our sin-

gletons are false positives, recent 

studies have suggested that modern 

SNP calling algorithms are risk-

averse, and have resulted in rare 

variants suffering from a pervasive 

problem of false negatives (33, 34). 

Consistent with this possibility, we 

find that nearly 67% of our single-

ton heritability derives from variants that were not called in gnomAD (indicated by * in Fig 2C), and 85% of 

singleton heritability is contributed by alleles with global MAF<0.02%. Previous work has shown that addition-

ally partitioning common variants by LD resulted in minimal change after partitioning by MAF (5). 

Figure 2D shows how heritability accumulates as a function of MAF for different filtering schemes (with color-

ing as in Fig 2A) as well as when we partition all alleles by global MAF (based on either all of TGP or gno-

mAD). Surprisingly, partitioning variants by global MAF nearly doubles the inferred total heritability compared 

to cohort MAF (ℎ!!"!#$ = 0.165 and 0.153 for gnomAD and TGP, respectively, versus ℎ!!"!#$ = 0.089 for 

GEUVADIS), and that a majority of heritability (52.1% and 50.9% for gnomAD and TGP, respectively) is due 

to globally rare variants (MAF<0.1%). We show analytically and with simulations that these results are con-

sistent with a “singleton-LD” effect (23), which previously has only been reported for common variants (5, 26). 

To investigate the ability of rare variants to capture heritability of common variants (and vice-versa), we refit H-

E regression removing MAF bins from rarest to most common (and vice-versa). We found that while rare vari-

ants could capture some of the heritability of more common variants, common variants could not capture the 

	
Fig 2. Characterizing the genetic architecture of human gene expression. (A) Total heritability 
inferred across genes for different frequency filters (based on minor allele count, MAC, or 
minor allele frequency, MAF). Excluding all low frequency variants (MAF<5%) results in 
substantial “missing heritability”. (B) The proportion of heritability attributed to each MAF 
bin. Singletons represent >20% of the total inferred heritability. (C) Partitioning singletons in 
our data (n=360) by global MAF (based on TGP, n=2505, or gnomAD, n=15k) demonstrates 
that the vast majority of singleton heritability is due to sites that are globally very rare (i.e. 
singletons in all of TGP or not reported in gnomAD, indicated by *). Note that all bins exclu-
sively contain singletons. (D) Cumulative heritability inferred as a function of observed MAF 
for different frequency filter thresholds (brown, orange, purple, green) and as a function of 
global MAF (based on gnomAD, red, or TGP, blue). Including all SNPs and partitioning by 
global MAF (instead of observed MAF) results in a substantially increased level of heritabil-
ity. In all panels, points represent mean across genes, with whiskers and envelops representing 
99% quantile range for 10,000 bootstrap samples.	

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/219238doi: bioRxiv preprint first posted online Nov. 14, 2017; 



5. Conclusions



Progress – what we’ve learned
• Genetics of gene expression:

– Prevalence of genetic variants affecting gene expression
– Large catalogs of cis-QTLs, diverse contexts, variants, mol phenotypes

• Connections to complex traits:
– Better data and methods provide better estimate of contribution of 

expression to h2, and interpretation of individual variants (MR, etc)
– Current estimates indicate gene expression contribute sizeable but not 

majority fraction to trait h2

• Contribution of expression, epigenetic data to explaining missing h2?
– Modestly improved power for identifying individual GWAS hits through 

informed priors, potential for better prediction

• Improved interpretation and mechanism



Why delve deeper into expression?
• Help determine when and how much to invest in WGS, 

expression, epigenetic data

• To continue understanding implicated
– Genes
– Tissue and cell types
– Epigenetic and other regulatory mechanisms

• Challenges and caveats
– Ambiguity: many variants affect multiple genes
– Interpretability: missing relevant cell types
– Power: trans-eQTLs also require large sample sizes



Ongoing effots
Scaling up eQTL studies, finding trans:
• eQTLGen: meta-analysis of all available whole blood 

expression data including over 30,000 samples
• GTEx v8: 1,000 individuals, WGS, over 50 tissues

Environment and dynamic QTLs

Single cell analysis - Human Cell Atlas, etc

Integrated analysis connecting epigenetic and expression data 
for improved resolution, disambiguation, power

Methods

… …
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Cis-eQTLs remain to be discovered
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GTEx trans-eQTLs
• Trans-eQTL often coincide with cis-eQTLs
• Tissue-specific mechanisms identified 

The GTEx Consortium, Nature 2017
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Multiple independent SNPs per gene
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Variants associated with many genes
Cis-eQTL variants have multiple gene targets, 
particularly once considering multiple tissues

0.25

0.50

0.75

1.00

2 3 4 5 6 7 8 9 10
− log10(p−value)

Pr
op

or
tio

n 
va

ria
nt

s 
w

ith
 to

p 
ge

ne
sh

ar
ed

 a
cr

os
s 

tis
su

es



Progress – what we’ve learned

• Genetics of gene expression:
– Understand prevalence of cis-eQTLs
– Improved eQTL catalogs based on larger studies
– Complexity: context-specificity, allelic 

heterogeneity, multiple gene targets
– Coverage of diverse variant classes and molecular 

phenotypes including alternative splicing
– Rare variant effects on gene expression



Progress – what we’ve learned

• Connections to complex traits:
– Better epigenetic data and eQTL catalogs provide better 

estimate of contribution of expression to h2

– Improved methods:
• Co-localization, fine-mapping
• Mendelian randomization approaches
• LD-score regression and related approaches tailored for utilizing 

expression and epigenetic data

– Current estimates indicate gene expression contribute 
sizeable but not majority fraction to trait h2



Progress – what we’ve learned

• Contribution of expression and epigenetic data 
to explaining missing h2?
– Modestly improved power for identifying individual 

GWAS hits through informed priors
– Potential improvements for prediction

• Improved interpretation and mechanism
– Identified target genes of individual GWAS hits
– Identified relevant tissues and cell types in aggregate



Challenges and caveats

• Ambiguity – many variants affects multiple 
genes in cis, in multiple tissues

• When missing the relevant cell types, genes, or 
environments current methods are not always 
interpretable

• Trans-eQTLs should be major component, but 
they are largely uncharacterized due to power



Key questions?

• How much heritability is explained by 
expression

• How much heritability is explained by 
epigenetics?
– And is that all reflected in expression if measured in 

right tissue, right time point, right context?
• Limitations of current data?
• Limitations of current methods?
• Can expression/epigenetic data HELP explain 

missing heritability


