Gene-Environment Interactions

David Hunter

Nuffield Department of Population Health University of Oxford

Harvard TH Chan School of Public Health

Channing Laboratory, Brigham and Women's Hospital

Broad Institute of MIT and Harvard

Differences in rates of most diseases <u>between</u> countries (and over time within countries) are due to differences in environmental and "lifestyle" risk factors – not genetic differences

Post-GWAS Polygenic Risk Scores are predictive – Breast Cancer

Maas, Chatterjee et al. JAMA Oncol 2016

Differences in individual risk of most diseases within countries are due to differences in both genetic and environmental and "lifestyle" risk factors.

We need to measure both.

How do they "interact"?

RATIONALES FOR STUDY OF Gene-Environment INTERACTION

Explain more of the variance in disease risk

•Define susceptible sub-population in order to strengthen environmental association

Provide individualized prevention advice

PHARMACOGENETICS

the study or clinical testing of genetic variation that gives rise to differing response to drugs

minimal exposure misclassification

obvious practical utility

Class	Genetic variant	Drug	Type of adverse reaction	Odds ratio
Phase I	CYP2B6 reduced function alleles	Efavirenz	Neurological symptoms	Odds ratio for plasma concentration above therapeutic levels: 48.1
	CYP2D6 duplications	Codeine	Symptoms associated with opioid overdose	1.4
	CYP2D6 deficiency	Metoclopramide Perhexiline	Acute dystonic reactions Neurotoxicity	Only case reports Only case reports
	DPYD reduced function alleles	Fluoropyrimidines (capecitabine, fluorouracil and tegafur)	Severe systemic toxicity, mainly diarrhea, neutropenia, thrombocytopenia and cardiotoxicity	*2A: 15.2; D949V: 9.1
Phase II	GSTM1 null	Isoniazid	DILI	2.2
	GSTTI null		DILI	2.6
	UGT1A1*28	Irinotecan	Myelosuppression and neutropenia	9.3
	UGT2B7*2	Diclofenac	DILI	8.5
	TPMT deficiency	Mercaptopurine	Myelosuppression	het: 4.6; hom: 18.6
Transporter	Reduced SLCO1B1 activity (rs4149056)	Simvastatin (80 mg daily)	Myopathy and rhabdomyolysis	het: 4.5; hom: 16.9
Major	HLA-B*57:01	Flucloxacillin	DILI	80.6
histocompatibility complex	DRB1*07:01 and DQA*02:01	Ximelagatran	DILI	4.4
	DRB1*15:01 and HLA-A*02:01 and HLA-B*18:01	Amoxicillin- clavulanate	DILI	10.1
	HLA-A*33:03	Ticlopidine	DILI	36.5
	DRB*15:01 and DQA*01:02	Lumiracoxib	DILI	5
	HLA-B*57:01	Abacavir	HSS	117
	HLA-B*15:02 and HLA-A*31:01	Carbamazepine	HSS and SJS/TEN	10.8
	HLA-B*15:02	Phenytoin	SJS/TEN	25.2
	HLA-B*58:01	Allopurinol	SJS/TEN	394
	HLA-B*58:01	Nevirapine	DILI	3.5
	HLA-DRB1*01	•	DILI	2.9
	HLA-C*04:01		SJS/TEN	17.5

Lauschke et al. The AAPS Journal 2018

Table 3. Genetic Germline Variants that Modulate Drug Efficacy

Drug	Phenotype / Genetic variant	Mechanism	Effect size (R^2)
Codeine	CYP2D6 deficiency	Reduced metabolism to active substance (morphine)	Expected to be very high
Warfarin	Decreased CYP2C9 activity (CYP2C9*2)	Reduced inactivation of warfarin. Thus, reduced VKORC1 inhibition	3.8%
	Decreased CYP2C9 activity (CYP2C9*3)		8%
	Decreased CYP4F2 activity (CYP4F2*3)	Increased levels of vitamin K dihydroquinone, which is necessary for carboxylation of coagulation factors	1.1%
	Reduced VKORC1 activity (VKORC1*2)	Reduced levels of vitamin K dihydroquinone, which is necessary for carboxylation of coagulation factors	28.3%
Clopidogrel	Reduced CYP2C19 activity (CYP2C19*2)	Reduced bioactivation of the prodrug	12%
Proton pump inhibitors	Increased CYP2C19 activity (CYP2C19*17)	Increased inactivation to 5-hydroxyomeprazole in H. pylori eradication therapy	Eradication 72.7% in UM and 97.8% in PM
Atorvastatin	LPA (rs10455872); APOE (rs445925, rs4420638)	Decreased reduction in low-density lipoprotein cholesterol	4% combined

PM poor metabolizer, UM ultrarapid metabolizer

Lauschke et al. The AAPS Journal 2018

Figure 1. Four qualitative patterns of gene–environment interaction described by (and numbered after) Haldane (1938). The *y*-axis represents a trait value (e.g. mean height, disease prevalence or expected survival); the *x*-axis represents two environmental conditions.

"Interaction of nature and nurture"

Haldane JS, 1938

Multiple Comparisons Problem?

Multiple (genes and genetic models),Multiple environment (risk factors, risk factor definitions),Multiple models of interactionComparisons Problem

Solution: Multiple, large studies

Criteria: Strength of association

Biologic Plausibility

Consistency of findings

Gene-Environment Interaction

Gene-Environment Interaction

Gene-Environment Interaction

How common are env-env interactions?

- Smoking/alcohol in esophageal cancer
- BMI/menopausal status in breast cancer
- PMH/BMI in breast cancer
- Aflatoxin/HBV in liver cancer
- Radiation/young age in breast cancer
- Radiation/smoking in lung cancer
- Skin type/UV and skin cancer
- Interactions that depart from the multiplicative model are the exception not the rule

Despite interest in GxE, there are few agreed-upon successes where the effect of exposure differs across genotypes (and vice versa).

McAllister et al. *Am J Epidemiol.* 2017;186(7):753–761

Despite interest in GxE, there are few agreed-upon successes where the effect of exposure differs across genotypes (and vice versa).

McAllister et al. *Am J Epidemiol.* 2017;186(7):753–761

Why so few supra- or sub-multiplicative interactions?

- Poor measurement of genes?
- Low power of studies
- Poor measurement of environment?
- There aren't many to find?

Sample sizes needed are large

"Good"
Sensitivity=77%
Specificity=99%

"Bad"
Sensitivity=30%
Specificity=50%

Misclassification of exposure degrades power

Risk of alcoholic liver cirrhosis

Danish Cancer, Diet and Health cohort

Adj. smoking, education, waist circumference

Askgaard et al. J Hepatol. 2015

Alcohol consumption (drinks/week)

Alcohol consumption (drinks/week)

Measured BMI n=153 studies

BMI Vs Mortality

Global BMI Mortality Collaboration

Lancet 2016

Measured BMI n=153 studies

BMI Vs Mortality

Global BMI Mortality Collaboration

Lancet 2016

From: Leisure Time Physical Activity and Mortality A Detailed Pooled Analysis of the Dose-Response Relationship

JAMA Intern Med. 2015;175(6):959-967. doi:10.1001/jamainternmed.2015.0533

Hazard Ratios (HRs) and 95% CIs for Self-reported Leisure Time Moderate- to Vigorous-Intensity Physical Activity and Mortality

Triaxial accelerometer-measured PA vs Mortality in the WHI

Tertile of Accelerometer PA

Womens' Health Initiative, n=6,382, 450 deaths. LaMonte et el. J Am Geriatr Soc. 2017

MODELLING GENE-ENVIRONMENT INTERACTIONS

DO CLASSIC BREAST CANCER RISK FACTORS SYNERGIZE WITH GWAS SNPS?

16,285 BC cases and 19,376 controls

39 GWAS-assoc SNPS x 8 "Env" Risk Factors

AAM

Parity

AAMeno

Height

BMI

FΗ

Smoking

Alcohol

[&]quot;After correction for multiple testing, no significant [multiplicative] interaction between SNPs and established risk factors...was found."

Maas, Chatterjee et al. JAMA Oncol, 2016

MORE BREAST CANCERS COULD BE PREVENTED IN HIGH RISK STRATA

Percentage preventable breast cancers by removal of modifiable risk-factors (overall and in categories of non-modifiable risk quintiles)

	All Modifiable Factors Simultaneously	
	% Preventable	% Total
NonMod Risk Quintile 1	12.3	4.03
NonMod Risk Quintile 2	16.0	5.23
NonMod Risk Quintile 3	18.7	6.14
NonMod Risk Quintile 4	22.4	7.34
NonMod Risk Quintile 5	30.6	10.01
Overall	100.0	32.75

PRS, Lifestyle and CHD

Khera et al. NEJM 2016

A Atherosclerosis Risk in Communities

With some exceptions (e.g. drug idiosyncracies) genetic and environmental and "lifestyle" risk factors are independent and the risks multiply.

Inclusion of Gene-Gene and Gene-Environment Interactions Unlikely to Dramatically Improve Risk Prediction for Complex Diseases

Hugues Aschard,^{1,2,*} Jinbo Chen,³ Marylin C. Cornelis,⁴ Lori B. Chibnik,⁵ Elizabeth W. Karlson,⁶ and Peter Kraft^{1,2,6}

The American Journal of Human Genetics (2012), doi:10.1016/j.ajhg.2012.04.017

Five-Year Absolute Risk of Breast Cancer (%)

34

SUMMARY

- In ten more years we have discovered few examples of synergy between genes and environment
- Gene variants that dramatically alter drug metabolism can dramatically alter drug SFX and efficacy
- Most genetic and environmental risk factors conform to the multiplicative model
- This is good news! It makes risk prediction algorithms more stable
- The multiplicative model implies that environmental risk reduction in those at high genetic risk prevents more cases
- It conforms to our new understanding of highly polygenic risk and complex environmental causation

SNP-SNP risks simply multiply

