

Family Studies and Complex Disease

Lynn Jorde Mark and Kathie Miller Presidential Professor and Chair Department of Human Genetics May 1, 2018

Family studies and complex disease: Applications

- Detection of causal *de novo* mutations
 - CNVs: e.g., autism, schizophrenia
 - SNVs: e.g., intellectual disability (Gilssen *et al.*, 2014, *Nature*), congenital heart disease (Jin *et al.*, 2017, *Nat. Genet.*)
- Parent-of-origin effects
 - e.g., paternal CNV bias for autism (Brandler et al., 2018, Science)
- Germline and somatic mosaicism
- Detection of Mendelian subsets with complex disease phenotypes (*BRCA1, BRCA2, APC, etc.*)
- Multigenerational pedigrees allow detection of shared genomic segments containing rare disease-causing variants
- Families provide opportunity for long-term, longitudinal studies and return of clinically significant results

A Utah nuclear family

Utah Population Database (UPDB)

- University of Utah resource to support medical research, initiated in the 1970s
- 10 million people in large, multigenerational pedigrees are linked to more than 25 million medically relevant records
- Geocode information available
- Now expanded to 100 million people

Utah Genome Project (UGP): >7,000 cases sequenced; >50 diseases

WGS/WES + large pedigrees from 10-million-member Utah Population Database

- Amyotrophic lateral sclerosis
- Genetics of extreme thinness to develop obesity interventions
- Spontaneous preterm birth
- Familial childhood cancers (Ewing sarcoma, Wilms tumor, germ cell tumors)
- DNA repair genes and cancer
- Hematologic cancers: CLL, CML, multiple myeloma
- Common cancers: breast, prostate, colorectal
- Psoriasis and psoriatic arthritis
- Juvenile idiopathic arthritis
- Crohn disease
- Osteoarthritis
- Idiopathic pulmonary fibrosis
- Familial cardiac arrhythmia
- Autism
- Suicide
- Primary ovarian insufficiency
- WGS of Utah CEPH pedigrees (n= ~600)

Evaluating *de novo* mutations (DNMs) using Utah CEPH pedigrees

Centre d'Etude du Polymorphisme Humain (CEPH): Collaborative Genetic Mapping of the Human Genome

JEAN DAUSSET,* HOWARD CANN,* DANIEL COHEN,* MARK LATHROP,* JEAN-MARC LALOUEL,† AND RAY WHITE†^{,1}

*Centre d'Etude du Polymorphisme Humain (CEPH), 27 rue Juliette Dodu, 75010 Paris, France; and †Howard Hughes Medical Institute and Department of Human Genetics, University of Utah Health Sciences Center, Salt Lake City, Utah 84132

Genomics, 1990

Tom Sasani, PhD student

Overview of CEPH/Utah dataset

603 individuals 34 families 4-16 F2 per family *DNA from original blood draws*

Illumina sequencing @ ~32X coverage for all individuals CEPH/Utah pedigrees offer excellent power for detecting and validating DNMs by transmission

 $= 0.5^7 = 0.0078 - a$ likely false positive

Estimating a false negative rate of DNM detection

False negative rate is < 4%

By validating DNM in the F1 generation by transmission, we find an average of 71 DNMs per individual ($\mu = 1.3 \times 10^{-8}$)

Number of DNMs in child

We observe ~1.3 additional DNM per year of paternal age; 0.3 DNM per year of maternal age

Large F2 allows longitudinal evaluation of DNM rate

Paternal age effect within individual CEPH pedigrees

Paternal age at birth

339 germline mosaic events (de novo variants in multiple F2s) identified across CEPH families

"Return to CEPH"

- Families were recontacted in 1990s
- 180 phenotype variables collected
 - Lipid profiles
 - Blood chemistry panel
 - Blood pressure, ECG, echocardiogram
 - Anthropometrics
 - Behavioral assessments
 - Plasma, urine samples
- Fourth-generation data collection to be initiated with recontact of families and follow-up

Prescott *et al.*, 2008, Annu. *Rev. Genomics Hum. Genet.*

Finding new genes in large pedigrees: Shared Genomic Segments (SGS)

Nicola Camp, PhD

- Ideal for large pedigrees -- inherited genomic sharing unlikely in very distant relatives
 - Inherited sharing across 15 meioses is unlikely across a genome
 - Shared environment unlikely for distant relatives
 - Small sample sizes have good power for gene detection

Waller RG, ..., Camp NJ, 2018, *PLoS Genetics*

Finding new genes in large pedigrees: Shared Genomic Segments (SGS)

• Ideal for pedigrees -- inherited genomic sharing unlikely in very distant relatives

- Inherited sharing across 15 meioses is unlikely across a genome
- High-density SNPs provide good resolution of genomic regions
 - SNP microarrays
 - SNPs extracted from WGS

Finding new genes in large pedigrees: Shared Genomic Segments (SGS)

- Ideal for pedigrees -- inherited genomic sharing unlikely in very distant relatives
 Inherited sharing across 15 meioses is unlikely across a genome
- High-density SNPs provide good resolution of genomic regions
 - SNP microarrays
 - SNPs extracted from WGS
- Simple concept -- identity-by-state (IBS) used to infer identity by descent (IBD)
 - Length shared IBS is significantly longer than expected by chance, then likely IBD
 - Empirical estimate of genome-wide significance
 - Pedigree structure
 - Marker and LD map
 - Intra-familial heterogeneity assessed with all-subsets approach

SGS applied to multiple myeloma

- Late-age onset hematologic cancer
- <50% five-year survival

 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 전
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</

Ø_TO

- GWAS accounts for ~20% of heritability (Mitchell et al., 2016, Nat. Comm.)
- 11 high-risk MM pedigrees identified from UPDB
 - Genotype SNP array
 - 3-4 sampled cases per pedigree
 - 8-23 meioses between cases
- Shared Genomic Segment analysis
- Exome sequencing
 - Utah pedigrees
 - Mayo pedigrees
 - INSERM, France pedigrees
 - Cornell pedigrees
 - 200 early onset MM
 - Publicly available data
 - coMMpass MM sporadic cases
 - controls

Waller RG, ..., Camp NJ, 2018, PLoS Genetics

One genome-wide significant SGS region (1.8 Mb) containing nine genes

Exome sequencing in the region

One gene, USP45, contains pathogenic variants

Table 1. Significant

Family	ММ	MGUS	Meioses	Туре	Position~	Length	P-Value	Gene	Consequence	Impact	AAF [^]
Utah 571744	3		20	SGS	6:98,489,655-100,243,996	1.8	3.3x10 ^{-6*}				
PET-Nice 0909	1	2	з	SNV	6:99,891,443			USP45	p.Gln691*	Stop Gain	None
Mayo 458	1	1	2	SNV	6:99,893,787			USP45	p.Gln621Glu	Missense	None

~Build HG19. In mega-bases. *Genome-wide significant. Alternate allele frequency based on the non-TCGA, non-Finnish, European ExAC individuals.

USP45 is a DNA repair gene

- Deubiquitylates ERCC1, a catalytic subunit of the ERCC1-ERCC4 DNA repair complex
- Mouse USP45 knockout models
 - higher levels of ubiquitylated ERCC1
 - cells are hypersensitive to UV radiation and DNA inter-strand cross-links
 - DNA damage repair is impaired
- Well-established role in tumor resistance to chemotherapy

Regions identified by multiple pedigrees

ARID1A involved in chromatin remodeling

Intolerant to LOF and missense variation

Prominent role in cancer somatic mutations --tumor suppressor

Table 1. overlapping SGSs and segregating SNVs.

Family	ММ	MGUS	Meioses	Туре	Position~	Length	P-Value	Gene	Consequence	Impact	AAF^
Utah 576834	3		12	SGS	1:24,389,214-33,298,821	8.9	3.0x10 ⁻⁴				
Utah 260	3		16	SGS	1:26,224,634-27,384,988	1.2	2.1x10 ⁻⁴				
Utah 576834	3		12	SNV	1:27,023,162			ARID1A	p.Ser090Gly	Missense	0.0000
Cornell MM12	2	0	4	SNV	1:27,089,712			ARID1A	p.Met890Val	Missense	0.0001

"Build HG19. In mega-bases. *Genome-wide significant. Alternate allele frequency based on the non-TCGA, non-Finnish, European ExAC individuals.

Ding (2017) *Cancer Research*. Pediatric ALL mutation profiles. ARID1A potential tumor suppressor; Rao (2017) *Carcinogenesis*. 5 most frequently somatically deleted genes in liver cancer; (2017) *Cancer Discovery*. NEWS HIGHLIGHT. ARID1A deficiency promotes colon cancer via enhancer dysregulation; Mathur (Dec 2016) *Nature Genetics*. ARID1A loss impairs enhancer mediated regulation and drives colon cancer in mice. Coatham (Dec 2016) *Modern Pathology*. Inactivating mutations and loss of ARID1A expression in aggressive ovarian and endometrial cancer; Agrihoti (Nov 2016) *Nature Genetics*. Recurrent mutations in ARID1A in nerve sheath tumors; Berns (Nov 2016) *Clinical Cancer Research*. Reduced ARID1A expression controls resistance in breast cancer (HER2/P13K/mTOR targeting agents);....

Other examples of SGS analyses in large Utah pedigrees

- Preterm birth
- Amyotrophic lateral sclerosis
- Small intestinal neuroendocrine tumors
- Autism
- Suicide
- Crohn disease

Family data can identify at-risk pedigree members: Young-onset atrial fibrillation

Martin Tristani-Firouzi, MD

KCNQ1 mutation causes atrial fibrillation in all family branches

KCNQ1 (*LQT1*) originally identified as a long QT syndrome gene in a large Utah family (Keating *et al.*, 1991, *Science*)

Projecting medical records onto family histories

Collaboration underway with AncestryDNA

SUMMARY: THE VALUE OF FAMILIES

- Evaluation of *de novo* events
- Parent-of-origin effects
- Mosaicism detection
- Discovery of rare variants difficult to identify in samples of unrelated subjects
- Follow-up with communication of testing results

ACKNOWLEDGMENTS

Jorde Lab Julie Feusier Karin Chen, MD Kristi Russell Jainy Thomas, PhD Scott Watkins, MS Jin Xing, PhD David Witherspoon, PhD

Programmers: Andrew Farrell, PhD Matt Velinder **CEPH Project**

George S and Dores Eccles

Benning Society

Mark Leppert

Ray White

DNA samples: Lisa Baird

UGP: Barry Moore Shawn Rynearson Deb Neklason Breanna Caruso

DNA Core Facilities

Derek Warner

HCI sequencing core

ARUP sequencing core

WashU Genome Center

The University of Utah Health Sciences Center

Quinlan Lab

Aaron Quinlan Thomas Sasani Ryan Layer, PhD

