


There can be pervasive epistasis and yet additive
models fit the data well.

Gene-gene interaction can be strong and still
generate little epistatic variance.

The Infinitesimal model —is clearly silly, but it still
nas great utility.

nfinitesimal epistatic model does not improve fit.

ndividual prediction that accommodates gene-
gene interaction and GxE may yet be useful.




Epistasis in Manolio et al. (2009)

* “Narrow-sense heritability estimates in humans can be
inflated if family resemblance is influenced by non-additive
genetic effects (dominance and epistasis, or gene—gene
interaction), shared familial environments, and by
correlations or interactions among genotypes and
environment.”

* “Box 2: To investigate missing heritability using family
studies, the following measures are required: ....(8) ldentify
gene—gene interactions by positive correlation between
family-specific logs odds ratio (lod) scores or evidence of
linkage disequilibrium among unlinked loci.”

* “Box 3: The following steps can be used to make the most
of existing and future GWAS: .... (7) Investigate gene—gene
interactions, including dominance and epistasis.”



Gene-gene interaction without epistatic variance

Consider a multi-locus model for a quantitative trait:
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Maki-Tanila & Hill 2014 Genetics 198:355



Additive variance has epistatic terms

The average effect of an allele can be written as:

1 0un
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And the additive variance is the sum of the squared effects weighted by frequencies:

1 2
Va = ZZPi(l —Pi)<§3ﬂ/3pi) = ZHiaiz,

Kojima 1959 Genetics 45: 984
Maki-Tanila & Hill 2014 Genetics 198: 355



Gene-Gene interactions contribute to V,
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Punchline: A substantial portion of variation that is caused by epistatic
interaction ends up in the additive variance (contributing to heritability).

“a rather mundane theoretical finding”

Maki-Tanila & Hill 2014 Genetics 198:355



Fisher’s Infinitesimal Model

* Very large number of unlinked loci, each with
very small effect.

* Assume HW and linkage equililbrium.

* Phenotype is obtained as the sum of allelic
effects, and is normally distributed.

Barton, Etheridge & Véber 2017 Theor Pop Biol



Fisher’s Infinitesimal Model: results

Variance of offspring does not depend on trait
values of the parents.

Selection produces negligible change in allele
frequency (or variance).

The Breeder’s Equation (R = h?s) follows.
The model can accommodate epistasis.

Consequences of stabilizing selection,
inbreeding and assortative mating are easily
derived.

Barton, Etheridge & Véber 2017 Theor Pop Biol



Infinitesimal model of epistasis

* Suppose each pairwise interaction is small.
* Only very few are genome-wide significant.
* But there are O(n?) such pairwise interactions.

* So in aggregate, perhaps they can contribute to
genotype-phenotype association.

e Can we fit this model, just as Yang et al. (2010)
did for additive effects?

e Barton, Etheridge & Véber (2017) — deviation
from infinitesimal model is 1/W, where M is the

number of loci.



Extending the infinitesimal model to data on the whole genome...

“... regression of a trait on sequence can
significantly improve predictions of breeding
value, even when individual loci cannot be
identified: this is the basis of “genomic
selection”” (Meuwissen et al., 2013).

It may be that natural selection is in just the
same position as a breeder: selection may
change the mean rapidly and predictably, even
when the probability distribution of any
particular allele frequency is hardly perturbed.”



Pairwise epistasis from GWAS
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Pairwise epistasis from Mendelian disorders

Non-syndromic midline craniosynostosis
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Phenotypically normal carrier parents of the
dominant Smad6 mutation all have common
variants in BMP2.

Timberlake et al. 2016 elife



So does epistasis matter in evolution?

* Genes exist in networks and epistasis at the
molecular level is pervasive.

* And yet, the infinitesimal model fits the data.

* Paixao & Barton (2016) compare a purely additive
model to one with epistasis.

 |f selection is weak (Ns < 1), drift dominates and
variance components are unchanged
(infinitesimal model of nonadditive effects).

* If selection is strong (Ns > 1), allele frequencies
change, and the genotype-phenotype map
matters more than variance components.

Paixao & Barton 2016 PNAS



Heritability vs. Individual prediction

* Genomic prediction is for Breeding Value
(mean phenotype of many offspring).

* GxG and GxE may perturb each individual
from this expectation.

* The ideal individual prediction could
accommodate GxG and GxE, if only we could
estimate them ...



Machine Learning to the rescue ??
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Reasons for missing epistasis

Markers are in imperfect LD with causal variants.
Rapid population growth = rare alleles.

Curse of dimensionality (power).

Small effect size (power).

Embedding in higher dimension gene-gene
interactions (epistasis appears as additive variance)

Embedding in gene x environment interactions.

Population substructure (heterogeneous
embedding).



