

Objectives

- There can be pervasive epistasis and yet additive models fit the data well.
- Gene-gene interaction can be strong and still generate little epistatic variance.
- The Infinitesimal model is clearly silly, but it still has great utility.
- Infinitesimal epistatic model does not improve fit.
- Individual prediction that accommodates genegene interaction and GxE may yet be useful.

Epistasis in Manolio et al. (2009)

- "Narrow-sense heritability estimates in humans can be inflated if family resemblance is influenced by non-additive genetic effects (dominance and epistasis, or gene–gene interaction), shared familial environments, and by correlations or interactions among genotypes and environment."
- "Box 2: To investigate missing heritability using family studies, the following measures are required:(8) Identify gene-gene interactions by positive correlation between family-specific logs odds ratio (lod) scores or evidence of linkage disequilibrium among unlinked loci."
- "Box 3: The following steps can be used to make the most of existing and future GWAS: (7) Investigate gene–gene interactions, including dominance and epistasis."

Consider a multi-locus model for a quantitative trait:

Genotype	Genotypic values without dominance
a ₁ a ₁ a ₂ a ₂ a ₃ a ₃	0
a ₁ a ₁ a ₂ a ₂ A ₃ a ₃	a ₃
a ₁ a ₁ a ₂ a ₂ A ₃ A ₃	2a ₃
a ₁ a ₁ A ₂ a ₂ A ₃ a ₃	$a_2 + a_3 + [aa]_{23}$
a ₁ a ₁ A ₂ a ₂ A ₃ A ₃	$a_2 + 2a_3 + 2[aa]_{23}$
a ₁ a ₁ A ₂ A ₂ A ₃ A ₃	$2a_2 + 2a_3 + 4[aa]_{23}$
A ₁ a ₁ A ₂ a ₂ A ₃ a ₃	$a_1 + a_2 + a_3 + [aa]_{12} + [aa]_{13}$ + $[aa]_{23} + [aaa]_{123}$
A ₁ a ₁ A ₂ a ₂ A ₃ A ₃	$a_1 + a_2 + 2a_3 + [aa]_{12} + 2[aa]_{13}$ + 2[aa]_{23} + 2[aaa]_{123}
A ₁ a ₁ A ₂ A ₂ A ₃ A ₃	$a_1 + 2a_2 + 2a_3 + 2[aa]_{12} + 2[aa]_{13} + 4[aa]_{23} + 4[aaa]_{123}$
$A_1A_1 A_2A_2 A_3A_3$	$2a_1 + 2a_2 + 2a_3 + 4[aa]_{12} + 4[aa]_{13}$ + 4[aa]_{23} + 8[aaa]_{123}

Mäki-Tanila & Hill 2014 Genetics 198:355

The average effect of an allele can be written as:

$$\alpha_i = \frac{1}{2} \frac{\partial \mu}{\partial p_i} = a_i + 2 \sum_{j \neq i} p_j [aa]_{ij} + 4 \sum_{j \neq i} \sum_{k \neq i, k > j} p_j p_k [aaa]_{ijk}$$

And the additive variance is the sum of the squared effects weighted by frequencies:

$$V_{\rm A} = \sum_i 2p_i(1-p_i) \left(\frac{1}{2}\partial\mu/\partial p_i\right)^2 = \sum_i H_i \alpha_i^2,$$

Kojima 1959 *Genetics* 45: 984 Mäki-Tanila & Hill 2014 *Genetics* 198: 355

Gene-Gene interactions contribute to V_A

$$V_{A} = \sum_{i} H_{i} \left(a_{i}^{2} + 4p_{j}a_{i}[aa]_{ij} + 4p_{k}a_{i}[aa]_{ik} + 4p_{j}^{2}[aa]_{ij}^{2} \right. \\ \left. + 4p_{k}^{2}[aa]_{ik}^{2} + 8p_{j}p_{k}[aa]_{ij}[aa]_{ik} + 8p_{j}p_{k}a_{i}[aaa]_{ijk} \\ \left. + 16p_{j}^{2}p_{k}[aa]_{ij}[aaa]_{ijk} + 16p_{j}p_{k}^{2}[aa]_{ik}[aaa]_{ijk} \\ \left. + 16p_{j}^{2}p_{k}^{2}[aaa]_{ijk}^{2} \right), \quad \text{where } i \neq j \neq k,$$

Punchline: A substantial portion of variation that is caused by epistatic interaction ends up in the additive variance (contributing to heritability).

"a rather mundane theoretical finding"

Mäki-Tanila & Hill 2014 Genetics 198:355

Fisher's Infinitesimal Model

- Very large number of unlinked loci, each with very small effect.
- Assume HW and linkage equilibrium.
- Phenotype is obtained as the sum of allelic effects, and is normally distributed.

Fisher's Infinitesimal Model: results

- Variance of offspring does not depend on trait values of the parents.
- Selection produces negligible change in allele frequency (or variance).
- The Breeder's Equation $(R = h^2 s)$ follows.
- The model can accommodate epistasis.
- Consequences of stabilizing selection, inbreeding and assortative mating are easily derived.

Infinitesimal model of epistasis

- Suppose each pairwise interaction is small.
- Only very few are genome-wide significant.
- But there are $O(n^2)$ such pairwise interactions.
- So in aggregate, perhaps they can contribute to genotype-phenotype association.
- Can we fit this model, just as Yang *et al*. (2010) did for additive effects?
- Barton, Etheridge & Véber (2017) deviation from infinitesimal model is $\frac{1}{\sqrt{M}}$, where *M* is the number of loci.

Extending the infinitesimal model to data on the whole genome...

"... regression of a trait on sequence can significantly improve predictions of breeding value, even when individual loci cannot be identified: this is the basis of "genomic selection" (Meuwissen et al., 2013).

It may be that natural selection is in just the same position as a breeder: selection may change the mean rapidly and predictably, even when the probability distribution of any particular allele frequency is hardly perturbed."

Pairwise epistasis from GWAS

Okada et al. 2012 Nature Genet

Pairwise epistasis from Mendelian disorders

Non-syndromic midline craniosynostosis

Phenotypically normal carrier parents of the dominant Smad6 mutation all have common variants in BMP2.

Timberlake et al. 2016 eLife

So does epistasis matter in evolution?

- Genes exist in networks and epistasis at the molecular level is pervasive.
- And yet, the infinitesimal model fits the data.
- Paixão & Barton (2016) compare a purely additive model to one with epistasis.
- If selection is weak (Ns < 1), drift dominates and variance components are unchanged (infinitesimal model of nonadditive effects).
- If selection is strong (Ns > 1), allele frequencies change, and the genotype-phenotype map matters more than variance components.

Heritability vs. Individual prediction

- Genomic prediction is for Breeding Value (mean phenotype of many offspring).
- GxG and GxE may perturb each individual from this expectation.
- The ideal individual prediction could accommodate GxG and GxE, if only we could estimate them ...

Machine Learning to the rescue ??

IOWA STATE UNIVERSITY Digital Repository

Graduate Theses and Dissertations

Iowa State University Capstones,

D

2016

Genomic Selection with Deep Neural Network

Riley Mitchell Mcdowell Iowa State University Yang Liu Informatics Institute, University of Missouri, Columbia Columbia, MO USA Ylmk2@mail.missouri.edu Duolin Wang Christopher S. Bond Life Sciences University of Missouri, Columbia Columbia, MO USA wangdu@missouri.edu

An Evaluation of Machine-learning for Predicting Phenotype:

studies in yeast and wheat

Nastasiya F. Grinberg¹ Ross D. King²

February 2, 2017

 Department of Medicine, University of Cambridge Cambridge CB2 0SP bioRxiv preprint first posted online Dec. 31, 2017; doi: http://dx.doi.org/10.1101/241414. The copyright holder for this preprint (peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.

Application of Deep Learning in Genomic Selection

2. School of Computer Science, University of Manch 9PL

DeepGS: Predicting phenotypes from genotypes using Deep Learning

Wenlong Ma^{1,†}, Zhixu Qiu^{1,†}, Jie Song¹, Qian Cheng^{1,2}, Chuang Ma^{1,2,*}

¹State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China, ²Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling 712100, China.

Reasons for missing epistasis

- Markers are in imperfect LD with causal variants.
- Rapid population growth \rightarrow rare alleles.
- Curse of dimensionality (power).
- Small effect size (power).
- Embedding in higher dimension gene-gene interactions (epistasis appears as additive variance)
- Embedding in gene x environment interactions.
- Population substructure (heterogeneous embedding).