missing epistasis

Andrew G Clark
Cornell University
Missing Heritability II
1-2 May 2018 – Silver Spring, MD
Objectives

• There can be pervasive epistasis and yet additive models fit the data well.
• Gene-gene interaction can be strong and still generate little epistatic variance.
• The Infinitesimal model – is clearly silly, but it still has great utility.
• Infinitesimal epistatic model does not improve fit.
• Individual prediction that accommodates gene-gene interaction and GxE may yet be useful.
“Narrow-sense heritability estimates in humans can be inflated if family resemblance is influenced by non-additive genetic effects (dominance and epistasis, or gene–gene interaction), shared familial environments, and by correlations or interactions among genotypes and environment.”

“Box 2: To investigate missing heritability using family studies, the following measures are required:(8) Identify gene–gene interactions by positive correlation between family-specific logs odds ratio (lod) scores or evidence of linkage disequilibrium among unlinked loci.”

“Box 3: The following steps can be used to make the most of existing and future GWAS: (7) Investigate gene–gene interactions, including dominance and epistasis.”
Gene-gene interaction without epistatic variance

Consider a multi-locus model for a quantitative trait:

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Genotypic values without dominance</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_1a_1 a_2a_2 a_3a_3$</td>
<td>0</td>
</tr>
<tr>
<td>$a_1a_1 a_2a_2 A_3a_3$</td>
<td>a_3</td>
</tr>
<tr>
<td>$a_1a_1 a_2a_2 A_3A_3$</td>
<td>$2a_3$</td>
</tr>
<tr>
<td>$a_1a_1 A_2a_2 A_3a_3$</td>
<td>$a_2 + a_3 + [aa]_{23}$</td>
</tr>
<tr>
<td>$a_1a_1 A_2a_2 A_3A_3$</td>
<td>$a_2 + 2a_3 + 2[aa]_{23}$</td>
</tr>
<tr>
<td>$a_1a_1 A_2A_2 A_3A_3$</td>
<td>$2a_2 + 2a_3 + 4[aa]_{23}$</td>
</tr>
<tr>
<td>$A_1a_1 A_2a_2 A_3a_3$</td>
<td>$a_1 + a_2 + a_3 + [aa]{12} + [aa]{13}$ + $[aa]{23} + [aaa]{123}$</td>
</tr>
<tr>
<td>$A_1a_1 A_2a_2 A_3A_3$</td>
<td>$a_1 + a_2 + 2a_3 + [aa]{12} + 2[aa]{13}$ + $2[aa]{23} + 2[aaa]{123}$</td>
</tr>
<tr>
<td>$A_1a_1 A_2A_2 A_3A_3$</td>
<td>$a_1 + 2a_2 + 2a_3 + 2[aa]{12} + 2[aa]{13}$ + $4[aa]{23} + 4[aaa]{123}$</td>
</tr>
<tr>
<td>$A_1A_1 A_2A_2 A_3A_3$</td>
<td>$2a_1 + 2a_2 + 2a_3 + 4[aa]{12} + 4[aa]{13}$ + $4[aa]{23} + 8[aaa]{123}$</td>
</tr>
</tbody>
</table>

Mäki-Tanila & Hill 2014 *Genetics* 198:355
Additive variance has epistatic terms

The average effect of an allele can be written as:

\[\alpha_i = \frac{1}{2} \frac{\partial \mu}{\partial p_i} = a_i + 2 \sum_{j \neq i} p_j [aa]_{ij} + 4 \sum_{j \neq i} \sum_{k \neq i, k > j} p_j p_k [aaa]_{ijk} \]

And the additive variance is the sum of the squared effects weighted by frequencies:

\[V_A = \sum_i 2p_i (1 - p_i) \left(\frac{1}{2} \frac{\partial \mu}{\partial p_i} \right)^2 = \sum_i H_i \alpha_i^2, \]

Kojima 1959 *Genetics* 45: 984
Mäki-Tanila & Hill 2014 *Genetics* 198: 355
Gene-Gene interactions contribute to V_A

$$V_A = \sum_i H_i \left(a_i^2 + 4 p_j a_i [aa]_{ij} + 4 p_k a_i [aa]_{ik} + 4 p_j^2 [aa]_{ij}^2 + 4 p_k^2 [aa]_{ik}^2 + 8 p_j p_k [aa]_{ij} [aa]_{ik} + 8 p_j p_k a_i [aaa]_{ijk} + 16 p_j^2 p_k [aa]_{ij} [aaa]_{ijk} + 16 p_j p_k^2 [aa]_{ik} [aaa]_{ijk} + 16 p_j^2 p_k^2 [aaa]_{ijk} \right), \quad \text{where } i \neq j \neq k,$$

Punchline: A substantial portion of variation that is caused by epistatic interaction ends up in the additive variance (contributing to heritability).

“a rather mundane theoretical finding”

Mäki-Tanila & Hill 2014 *Genetics* 198:355
Fisher’s Infinitesimal Model

• Very large number of unlinked loci, each with very small effect.
• Assume HW and linkage equililbrium.
• Phenotype is obtained as the sum of allelic effects, and is normally distributed.

Barton, Etheridge & Véber 2017 Theor Pop Biol
• Variance of offspring does not depend on trait values of the parents.
• Selection produces negligible change in allele frequency (or variance).
• The Breeder’s Equation ($R = h^2 s$) follows.
• The model can accommodate epistasis.
• Consequences of stabilizing selection, inbreeding and assortative mating are easily derived.

Barton, Etheridge & Véber 2017 *Theor Pop Biol*
Suppose each pairwise interaction is small. Only very few are genome-wide significant. But there are $O(n^2)$ such pairwise interactions. So in aggregate, perhaps they can contribute to genotype-phenotype association. Can we fit this model, just as Yang et al. (2010) did for additive effects? Barton, Etheridge & Véber (2017) – deviation from infinitesimal model is $\frac{1}{\sqrt{M}}$, where M is the number of loci.
Extending the infinitesimal model to data on the whole genome...

“... regression of a trait on sequence can significantly improve predictions of breeding value, even when individual loci cannot be identified: this is the basis of “genomic selection” (Meuwissen et al., 2013).

It may be that natural selection is in just the same position as a breeder: selection may change the mean rapidly and predictably, even when the probability distribution of any particular allele frequency is hardly perturbed.”
Pairwise epistasis from GWAS

Type 2 Diabetes

Body Mass Index

Bell et al. 2011 Ann Hum Genet

Okada et al. 2012 Nature Genet
Non-syndromic midline craniosynostosis

Phenotypically normal carrier parents of the dominant Smad6 mutation all have common variants in BMP2.

Timberlake et al. 2016 eLife
So does epistasis matter in evolution?

- Genes exist in networks and epistasis at the molecular level is pervasive.
- And yet, the infinitesimal model fits the data.
- Paixão & Barton (2016) compare a purely additive model to one with epistasis.
- If selection is weak ($Ns < 1$), drift dominates and variance components are unchanged (infinitesimal model of nonadditive effects).
- If selection is strong ($Ns > 1$), allele frequencies change, and the genotype-phenotype map matters more than variance components.

Paixão & Barton 2016 *PNAS*
• Genomic prediction is for Breeding Value (mean phenotype of many offspring).
• GxG and GxE may perturb each individual from this expectation.
• The ideal individual prediction could accommodate GxG and GxE, if only we could estimate them ...
An Evaluation of Machine-learning for Predicting Phenotype: studies in yeast and wheat

Nastasiya F. Grinberg¹ Ross D. King²

February 2, 2017

1. Department of Medicine, University of Cambridge, Cambridge CB2 0SP
2. School of Computer Science, University of Manch 9PL

DeepGS: Predicting phenotypes from genotypes using Deep Learning

Wenlong Ma¹,†, Zhixu Qiu¹,†, Jie Song¹, Qian Cheng¹,², Chuang Ma¹,²,†

¹State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China, ²Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling 712100, China.
Reasons for missing epistasis

- Markers are in imperfect LD with causal variants.
- Rapid population growth → rare alleles.
- Curse of dimensionality (power).
- Small effect size (power).
- Embedding in higher dimension gene-gene interactions (epistasis appears as additive variance)
- Embedding in gene x environment interactions.
- Population substructure (heterogeneous embedding).