Research Directions in Genetically-Mediated Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis:

Basic science of pathogenesis, functional genomics and mechanisms

Wen-Hung Chung, M.D.,Ph.D.
Drug Hypersensitivity Clinical and Research Center
Department of Dermatology,
Chang Gung Memorial Hospital
Chang Gung University, Taiwan
March 3, 2015

Mechanism of SJS/TEN

- Drug antigens
- Environmental factors
- Host factors:

Genetics: HLA and non-HLA associations

Non-genetic factors

Immune mechanism:

drug-peptides/proteins-HLA-TCR interaction

immune molecules and cytotoxic proteins

Cell death mechanism

Therapeutic targets

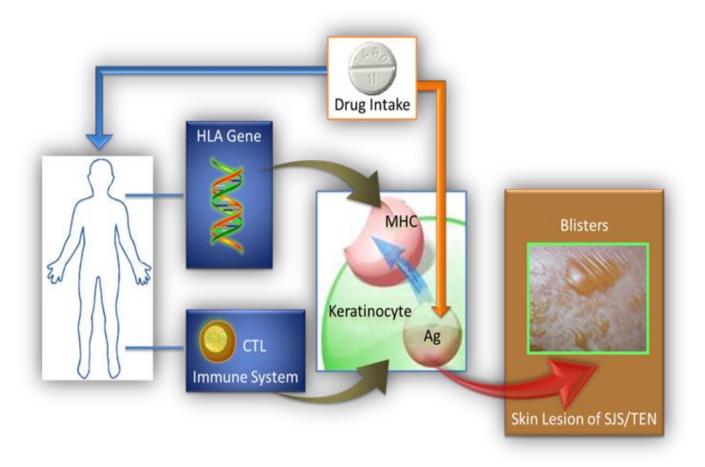
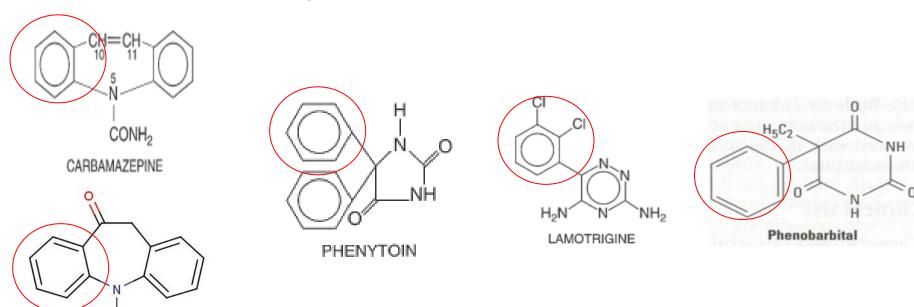
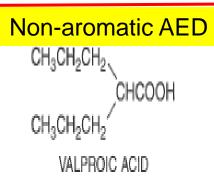

Historical milestones of SJS/TEN research

Table 3 Key dates and publications related to epidermal necrolysis.

Date	Author(s)	Concept	Refs
1866	von Hebra	Erythema exsudativum multiforme	12
1916, 1917	Rendu, Fiessinger and Rendu	Multiorificial ectodermosis	13,14
1922	Stevens and Johnson	Stevens-Johnson syndrome	15
1939	Debré et al	Bullous erythroderma with epidermolysis	11
1956	Lyell	Toxic epidermal necrolysis	1
1968	Bergoend H et al	High risk of long-acting sulfonamides	18
1968, 1970	Billingham and Streilein, Streilein and Billingham	TEN and a graft-versus-host model in hamsters	37,38
1970	Mellish and Glasgow	Staphylococcal scalded skin syndrome	3
1972	Peck et al	Human graft-versus-host reaction as a cause of TEN	39
1972	Kauppinen	Drug rechallenge often negative in SJS and TEN	9
1985	Ruiz-Maldonado	ADEN types 1, 2, and 3	22
1985	Revuz et al	First international meeting on TEN, Créteil, France	_
1985	Lyell A (Créteil meeting)	The Jackpot hypothesis	_
1986	Roujeau et al	Mild links between HLA and TEN	58
1987	SCAR study group	Initiation of multinational case-control study on EN	_
1990	Roujeau and Revuz	Acute skin failure	64
1993	Correia et al	Studying T cells in blister fluid of TEN	43
1993	Bastuji-Garin et al	Consensus definition of EEMM, SJS, and TEN	23
1995-2002	Pichler et al	Drug-specific T cell clones, p-i concept	44-47
1995	Roujeau et al	Results from first case-control study of drug risks in EN	32
1998	Viard I, et al.	Inhibition of Toxic Epidermal Necrolysis by Blockade of CD9	5 by IVIG
2002	Nassif et al	Drug-specific cytotoxic cells in blister fluid of TEN	48
2004	Chung et al	Carbamazepine (CBZ)-related TEN and HLA-B*15:02	29
2005	Hung et al	Allopurinol-related TEN and HLA-B*58:01	59
2008	Mockenhaupt et al	EuroSCAR case-control study of SJS/TEN	33
2008	Chung et al	Granulysin as the key cytokine in necrolysis	50
2011	Ko et al	Restricted TCR needed for CBZ-related SJS/TEN	52
2011	Genin et al	GWAS on a large European series of SJS/TEN cases	60
2012	Wei et al	Direct noncovalent link between CBZ and HLA-B1502	53
2012	Chen et al	Eradication of CBZ-induced TEN from Taiwan	63
2013	Sekula et al	SJS/TEN even more severe than suspected	28


ADEN = acute disseminated epidermal necrosis; EN = epidermal necrolysis; GWAS = genome-wide association studies; HLA = human leukocyte antigen; p-i concept = pharmoco-immune concept; RCT = randomized controlled trial; SCAR study = Severe Cutaneous Adverse Reactions study; SJS = Stevens-Johnson syndrome; TCR = T-cell receptor; TEN = toxic epidermal necrolysis.

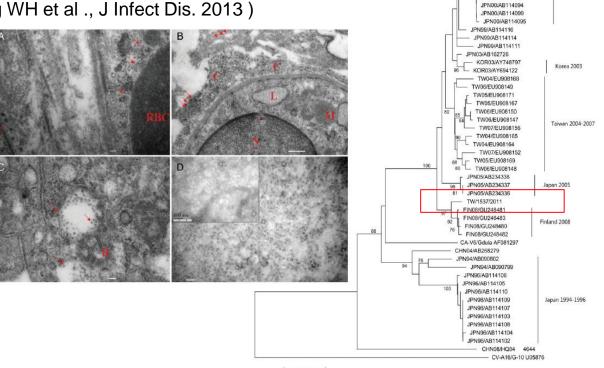
Pathogenesis of SJS/TEN


Frequency / Severity of Drug Hypersensitivity =
$$f_1$$
 Chemistry of drug + f_2 Biology of individual

Chemical structures of aromatic antiepileptic drugs frequently associated with SJS/TEN

Oxcarbazepine

NHa


Levetiracetam

Environmental factors

Mycoplasma
HSV
~20% Unknown?
6 new variant induced widespread

Coxsackievirus A6 new variant induced widespread mucocutaneous bullous reactions mimicking severe cutaneous adverse reactions (Chung WH et al., J Infect Dis. 2013)

TW07/EU908162 TW07/EU908157 TW07/EU908153

TW07/EU908151 TW07/EU908160 TW07/EU908159

TW07/EU908155 TW07/EU908163

JPN99/AB114113 JPN99/AB114112 7 JPN00/AB114101 JPN00/AB114096

JPN00/AB114100

JPN00/AB114098

TW07/EU908161 TW07/EU908154 TW05/EU908170 TW05/EU908170 TW05/EU908168 Taiwan 2005-2001

Japan 1999-2000

Host factors- genetics Association of serious drug hypersensitivity and HLA alleles

Culprit Drug	Drug Hypersensitivity	HLA Association	OR	Population	References
Aromatic anticonvuls	ants-induced SCAR				
Carbamazepine	SJS/TEN	HLA-B*15:02	2504	Han Chinese in Taiwan	[30]
	MPE	HLA-A*31:01	17.5	Han Chinese in Taiwan	[31]
	cADR	HLA-A*31:01	9.5	Japanese	[48]
	SJS/TEN	HLA-A*31:01	25.93	Northern European	[49]
	MPE	HLA-A*31:01	8.33	Northern European	[49]
	DRESS/SCAR	HLA-A*31:01	8.8	Korean	[50]
Oxcarbazepine	SJS/TEN	HLA-B*15:02	80.7	Han Chinese	[82]
Phenytoin	SJS	HLA-B*15:02	18.5	Thai	[95]
	SJS/TEN	HLA-B*15:02	5.1	Han Chinese	[82]
Lamotrigine	SJS/TEN	HLA-B*38:01	4.7	European	[55]
	SJS	HLA-B*15:02	5.1	Han Chinese	[82]
Antibiotics-induced d	rug hypersensitivity				
Abacavir	MPE/DRESS	HLA-B*57:01	117	Australian, Caucasians	[28, 29]
	MPE/DRESS	HLA-B*57:01	960	Australian	[96]
	Hypersensitivity	HLA-B*57:01	>900	White and Black	[97]
Aminopenicillin	DHS	HLA-A2	7	Italian	[98]
	DHS	HLA-DRW52	9	Italian	[99]
Nevirapine	DRESS	HLA-DRB1*01:01	18	Australian	[57]
	DHS	HLA-Cw8-B14	15	Sardinians	[70]
	SJS/TEN	HLA-C*04:01	5.17	Malawian	[71]
	DRESS	HLA-B*35:05	49	Thai	[72]
Sulfamethoxazole	SJS/TEN	HLA-B*38:02	76	European	[55]
Dapsone	DRESS	HLA-B*13:01	20.53	Han Chinese	[73]
Other drugs-induced	SCAR				
Allopurinol	SCAR	HLA-B*58:01	580.3	Han Chinese	[9]
	SJS/TEN	HLA-B*58:01	41	Japanese	[100]
	SJS/TEN	HLA-B*58:01	80	European	[55]
	SJS/TEN	HLA-B*58:01	348.3	Thai	[78]
	SCAR	HLA-B*58:01	97.8	Korean	[101]
Methazolamide	SJS/TEN	HLA-B*59:01	249.8	Korean	[102]
Oxicam	SJS/TEN	HLA-B*73:01	152	European	[55]

Abbreviations: cADR, cutaneous adverse drug reactions; MPE, maculopapular eruption; DHS, delayed-type hypersensitivity reaction; DRESS, drug rash with eosinophilia and systemic syndrome; SCAR, severe cutaneous adverse reactions; SJS, Stevens-Johnson syndrome; TEN, toxic epidermal necrolysis.

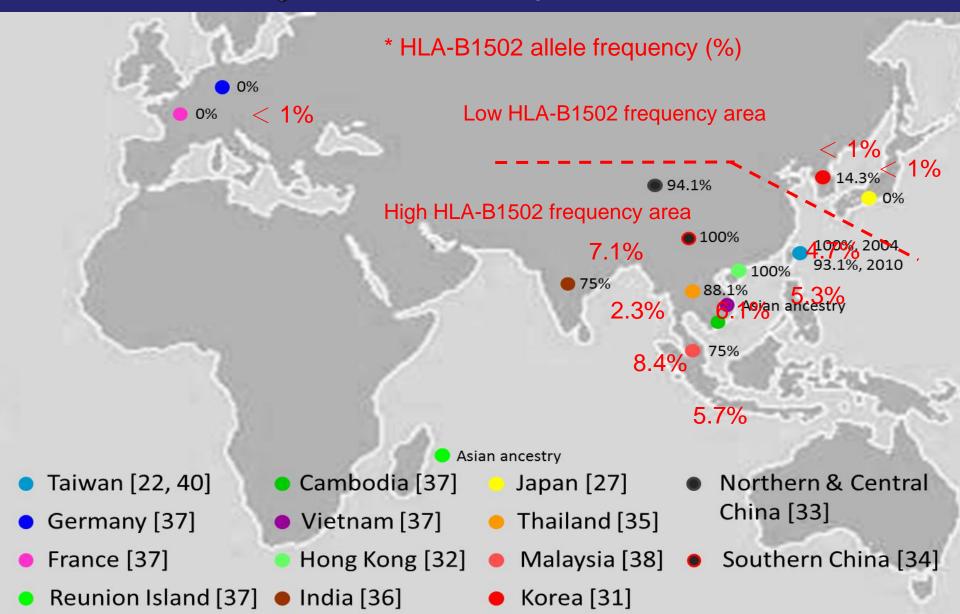
Medical genetics: A marker for Stevens – Johnson syndrome

WEN-HUNG CHUNG*, SHUEN-IU HUNG†, HONG-SHANG HONG*, MO-SONG HSIH‡, LI-CHENG YANG*, HSIN-CHUN HO*, JER-YUARN WU†§ & YUAN-TSONG CHEN†¶

- * Department of Dermatology, Chang Gung Memorial Hospital, Taipei, Taiwan
- ‡ Department of Neurology, Chang Gung Memorial Hospital, Taipei, Taiwan
- † Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- § Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- ¶ Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA

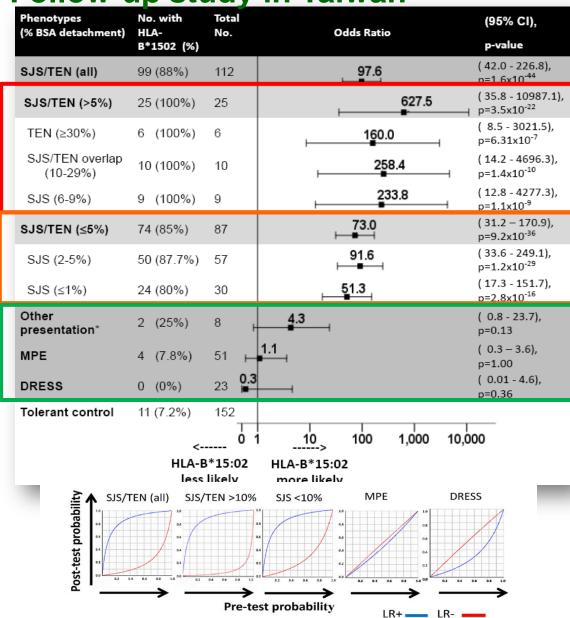
Table 1 Frequency of HLA alleles in patients with Ste	tevens-Johnson syndrome
---	-------------------------

HLA allele	CBZ-SJS	CBZ-tolerant	Normal
B*1502	44 (100%)	3 (3%)*	8 (8.6%)†
Cw*0801	41 (93.2%)	17 (16.8%)	13 (14%)
A*1101	36 (81.8%)	51 (50.5%)	53 (57%)
DRB1*1202	33 (75%)	12 (11.9%)	18 (19.4%)
B*1502, Cw*0801	41 (93.2%)	3 (3%)	7 (7.5%)
B*1502, A*1101	36 (81.8%)	2 (2%)	6 (6.5%)
B*1502, DRB1*1202	33 (75%)	1(1%)	5 (5.4%)
B*1502, Cw*0801, A*1101, DRB1*1202	29(66%)	0 (0%)	3 (3.2%)


Frequencies (by number and percentage) of individual or combined loci of the B^*1502 ancestral haplotype are shown in patients with carbamazepine-induced Stevens—Johnson syndrome (CBZ–SJS; n = 44), and in carbamazepine-tolerant (n = 101) and normal subjects (n = 93). For methods, see supplementary information.

*Odds ratio (CBZ–SJS/CBZ-tolerant): 2,504 (95% CI, 126–49,522); corrected P value $P_c = 3.13 \times 10^{-27}$.

†Odds ratio (CBZ–SJS/normal): 895 (95% CI, 50–15,869); $P_c = 1.38 \times 10^{-21}$.


Association of HLA-B*1502 with CBZ-SJS/TEN in different populations

WH Chung, Journal of Dermatological Science (2012)

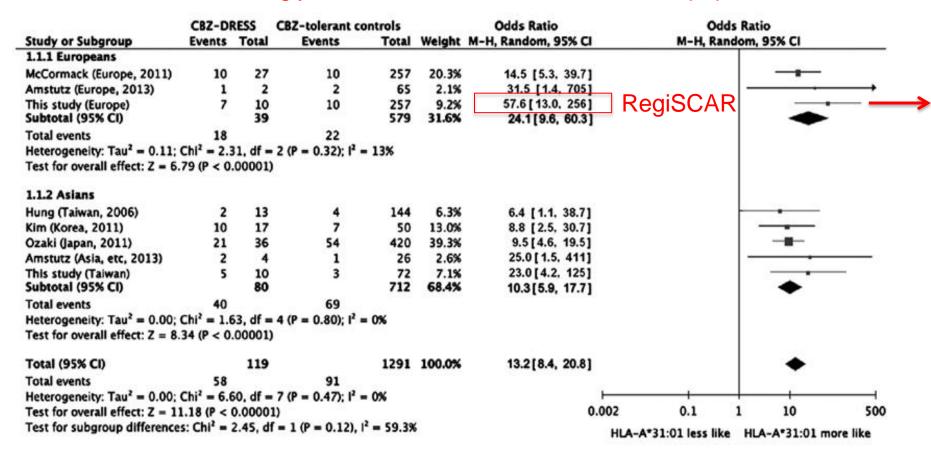
Phenotype & Genotype: HLA-B*1502 in CBZ-cADR (n=194)

Follow-up study in Taiwan

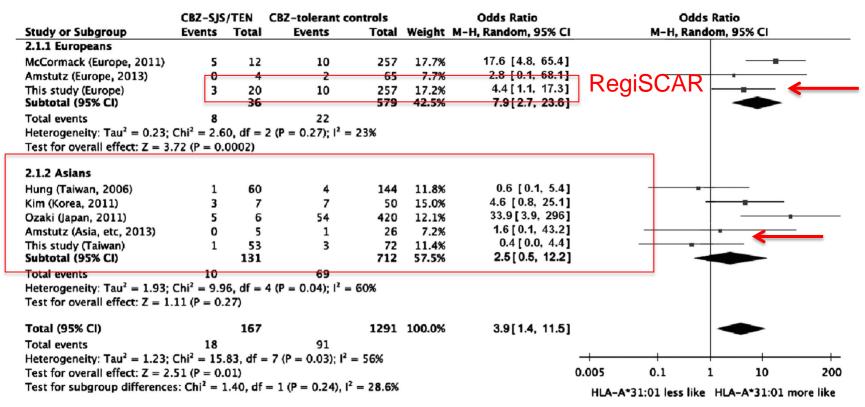
Y.-H. Hsiao et al. Journal of Dermatological Science, 2014

Phenotype and ethnicity specific HLA association

Populations	phenotype	CBZ-SJS/TEN	CBZ-DRESS
Han Chinese (<i>Hung SI</i> ,	HLA-A*3101	1/60 (NS)	6/19 ; P=9x10 ⁻⁷ OR= 16.15
Pharmacogene Genomics. 2006 and updated)	HLA-B*1502	59/60 ; P= 4x10 ⁻⁴³ OR=1357	0/19 (NS)
Japanese (Ozeki T, Hum Mol	HLA-A*3101	5/6; P= 2.35x10 ⁻⁴ OR= 33.9	21/36 ; P= 2.06x10 ⁻⁴ OR= 9.5
Genet. 2011)	HLA-B*1502	0 (NS)	0 (NS)
European (McCormack M, NEJM. 2011)	HLA-A*3101	5/12; P= 8x10 ⁻⁵ OR= 25.93	10/27 ; P= 0.03 OR= 12.41
TVLOIVI. 2011)	HLA-B*1502	0 (NS)	0 (NS)


^{*} NS: no significance

ORIGINAL ARTICLE


*HLA-A*31:01* and different types of carbamazepine-induced severe cutaneous adverse reactions: an international study and meta-analysis

E Genin^{1,12}, D-P Chen^{2,3,12}, S-I Hung^{4,12}, P Sekula⁵, M Schumacher⁵, P-Y Chang^{2,3}, S-H Tsai^{2,3}, T-L Wu^{2,3}, T Bellón⁶, R Tamouza^{7,8}, C Fortier^{7,8}, A Toubert^{7,8}, D Charron^{7,8}, A Hovnanian⁸, P Wolkenstein⁸, W-H Chung⁹, M Mockenhaupt¹⁰ and J-C Roujeau¹¹

HLA-A3101 is strongly associated with CBZ-DRESS in all populations

HLA-A*31:01 shows weaker association with CBZ-SJS/TEN of Europeans from RegiSCAR study: only (+) in 3/20

Figure 2. Analysis of the association between HLA-A*31:01 and carbamazepine (CBZ)-induced Stevens–Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) in multiple populations against tolerant controls. Events represent the carriers of HLA-A*31:01. Studying weighting (indicated by the squares) refers to the proportion of subjects who were recruited from each study. Tau^2 and I^2 represent the measures of heterogeneity. Diamonds represent pooled odds ratios (ORs), and horizontal lines indicate 95% confidence intervals (Cls). The data published in the literatures and in the present study was used for meta-analysis. $I^{15,23,24,35,36}$ d.f., degrees of freedom; M–H, Mantel–Haenszel method.

Carbamazepine Translational Roadmap

CBZ in Taiwan now)

HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol

Shuen-lu Hung^{a,b}, Wen-Hung Chung^{a,b,c,d}, Lieh-Bang Liou^e, Chen-Chung Chu^f, Marie Lin^f, Hsien-Ping Huang^a, Yen-Ling Lin^a, Joung-Liang Lan^g, Li-Cheng Yang^c, Hong-Shang Hong^c, Ming-Jing Chen^c, Ping-Chin Lai^h, Mai-Szu Wu^h, Chia-Yu Chuⁱ, Kuo-Hsien Wang^j, Chien-Hsiun Chen^a, Cathy S. J. Fann^a, Jer-Yuarn Wu^{a,k}, and Yuan-Tsong Chen^{a,l,m}

SCAR (51) = SJS/TEN(21) ; DRESS (30)

Table 3. Frequencies of individual or combined loci of HLA-B*5801 extended haplotype in patients with allopurinol-induced SCAR, allopurinol tolerant control, and general population control

Genotype	Allopurinol- SCAR (n = 51)	Tolerant control (n = 135)	Odds ratio	Pc value*	General population control $(n = 93)$	Odds ratio	Pc value*
B*5801	51 (100)	20 (15)	580.3	4.7 × 10 ⁻²⁴	19 (20)	393.5	8.1 × 10 ⁻¹⁸
Cw*0302	48 (94)	19 (14)	97.7	1.4×10^{-19}	19 (20)	62.3	2.5×10^{-13}
A*3303	34 (67)	24 (18)	9.3	2.2×10^{-4}	20 (22)	7.3	4.7×10^{-2}
DRB1*0301	33 (65)	17 (13)	12.7	2.8×10^{-6}	14 (15)	10.3	8.5×10^{-4}
B*5801, Cw*0302	48 (94)	19 (14)	97.7	1.4×10^{-19}	19 (20)	62.3	2.6×10^{-13}
B*5801, Cw*0302, A*3303	34 (67)	17 (13)	13.9	5.4×10^{-7}	16 (17)	9.6	1.7×10^{-3}
B*5801, Cw*0302, DRB1*0301	30 (59)	11 (8)	16.1	7.4×10^{-7}	10 (11)	11.9	7.8×10^{-4}
B*5801, Cw*0302, A*3303, DRB1*0301	21 (41)	9 (7)	9.8	0.039	9 (10)	6.5	>0.05

Numbers in parentheses indicate percentage.

^{*}The Pc values were adjusted by using Bonferroni's correction for multiple comparisons to account for the observed alleles.

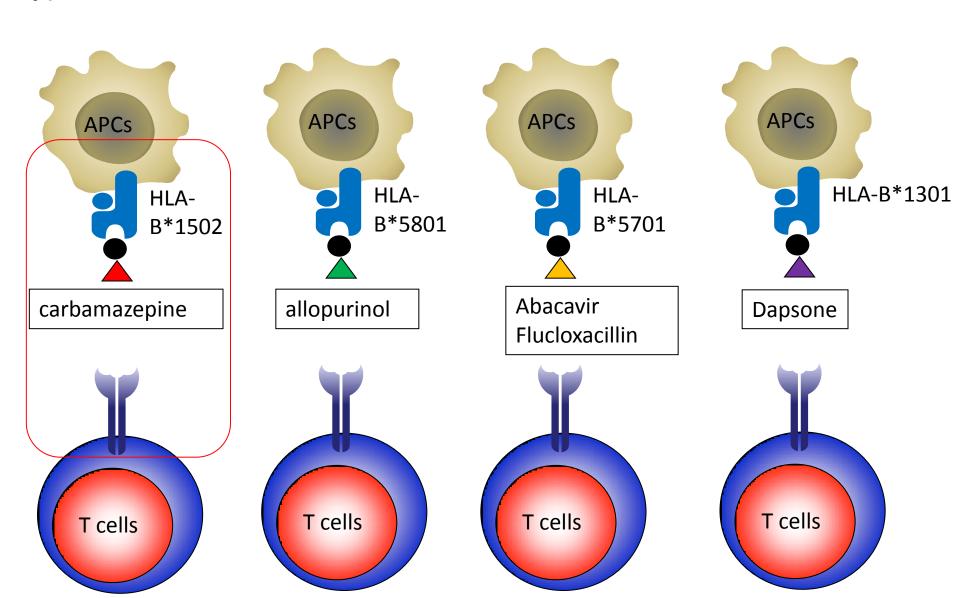
Validate the association between HLA-B*5801 and Allopurinol-SCAR in different populations

Table 1. HLA-B*5801 in Allopurinol-induced Severe Cutaneous Adverse reactions (SCAR).

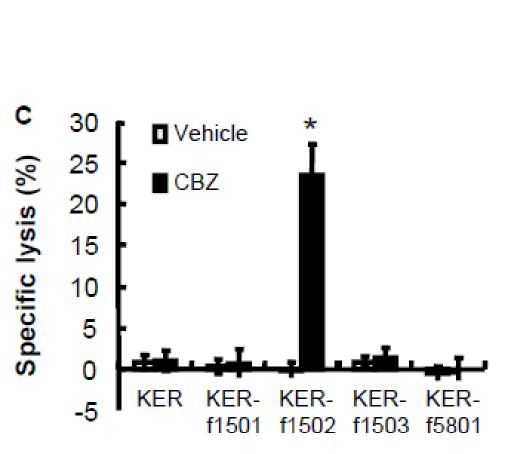
- 1	Study number	1	1		(European	n study)		3		4	
5	Study	Han Chin	ese ^a	Caucasiar				Japanese	c	Thai ^d	
\vdash	Case Control	51/51 20/135	(100%) (15%)	15/27 28/1822	(55%) (1.5%)	4/4	(100%)	7/13 6/493	(54%) (1.2%)	27/27 7/54	(100%) (13%)
4	Odds ratio	580.3	00.0	80				94.7	7.2)	348.3	(22.6.0)
_	95% C.I.) P value	(34.4 - 97 4.7× 10 ⁻²⁴	/ 1\ /				(24.4-367.3) 1.71×10 ⁻⁹		(19.2 - 6) 1.61×10		
}	Reference	Hung, et a 2005.	al. PNAS,	Lonjou, et al. Pharma Genomics, 2008.		acogenetics and K		Kaniwa, et al. Pharmacogenomics , 2008. Dainichi, et al. Dermatology, 2007.		Wichittra, et al., Pharmacogenetics and Genomics, 2009.	

^a Case: Allopurinol-SCAR; Control: Tolerant control.

^b Case: Allopurinol-SJS/TEN; Control: A mixed European population.

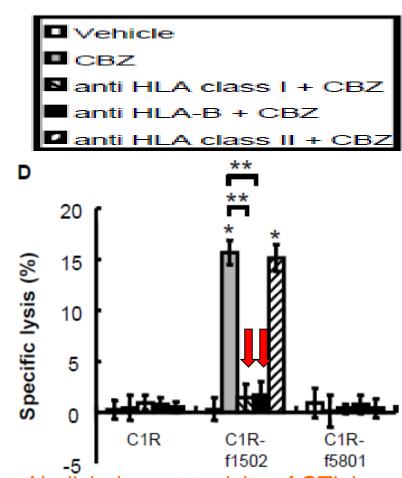

^c Case: Allopurinol-SJS/TEN; Control: Japanese population.

^d Case: Allopurinol-SJS/TEN; Control: Tolerant control.


^{*} Adjusted using Bonferroni's correction for multiple comparisons to account for observed alleles.

Role of HLA in drug hypersensitivity: HLA-restricted

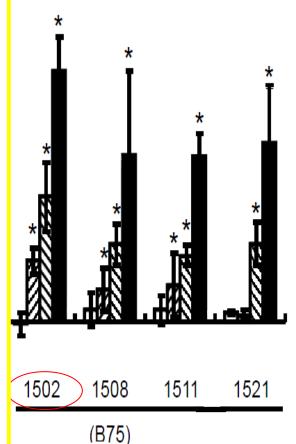
Hypothesis: HLA proteins have different affinity to the drug/peptide complex.



HLA-B*15:02-dependent cytotoxicity of CTL in carbamazepine (CBZ)-induced SJS/TEN

•Stable transfection of different HLA-B cDNAs into C1R B cells, or keratinocytes.

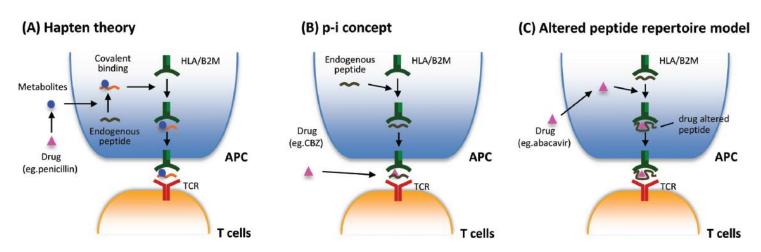
•CBZ-SJS CTLs only kill target cells expressing B*15:02.


 Abolish the cytotoxicity of CTL by anti- HLA class I/HLA-B antibodies

The same HLA serotype members (B75) could present CBZ to T cells.

Other HLA-B*15 subtypes associated with CBZ-SJS/TEN in different ethnic populations

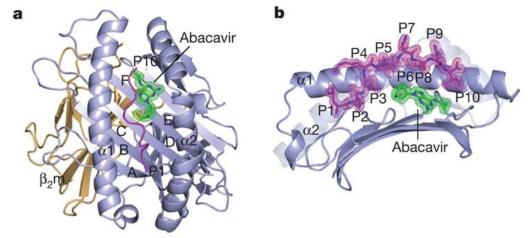
Allele HLA-B*)	Serotype	Population	Allele frequency	Patients	Ref
1501	B62	Japanese	7.5%*	1/7 (14.2%)	Kaniwa et al., 2008
1502	B75	Han Chinese	8%#	59/60 (98.3%)	Hung et al., 2006
		Han Chinese	19.8%*	4/4 (100%)	Man et al., 2007
		Indian	1%*	6/8 (75%)	Mehta et al., 2010
		Thai	8.2%*	37/42 (88.1%)	Tassaneeyakul et al., 2010
		Asians in Europe	6.9%*	4/4 (100%)	Lonjou et al., 2006
1508	B75	Indian	1%*	1/8 (12.5%)	Mehta et al., 2010
1511	B75	Thai	0.1%*	1/42 (2.38%)	Tassaneeyakul et al., 2010
		Japanese	0.8%*	1/7 (14.2%)	Kaniwa et al., 2008
		Han Chinese	0.9%*	2/101 (1.9%)	Our unpublished data
1518	B71	Japanese	0.9%#	1/5 (20%)	Ikeda et al., 2010
1521	B75	Thai	0.7%*	2/42 (4.76%)	Tassaneeyakul et al., 2010
1558	B62	Han Chinese	0.9%*	1/60 (1.6%)	Hung et al., 2006


^{*}Allele frequency from database: http://www.allelefrequencies.net/

- Stable transfection of different HLA-B cDNAs into keratinocytes.
- •HLA-B75 members could elicit the cytotoxicity of CBZ-specific CTLs.

[#] Allele frequency adapted from reference paper.

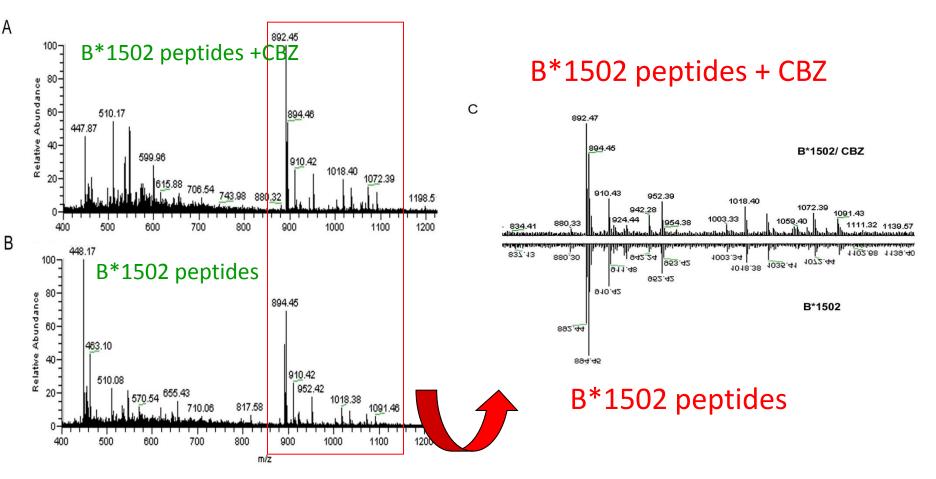
How HLA and TCR recognize drugs in drug hypersensitivity?



	Hapten concept	p-i concept	altered self-peptide repertoire
Peptide-drug interaction	Covalent binding	Non-covalent	Non-covalent
Drug activity	Drug activity Reactive (e.g penicillin)		Inert (e.g. abacavir)
Ag processing	Processing, Non- processing	Non-processing	Processing
MHC restricted MHC-restricted		MHC-restricted, non- restricted	MHC-restricted
TCR types	oligoclonal	Oligoclonal,polyclonal	polyclonal

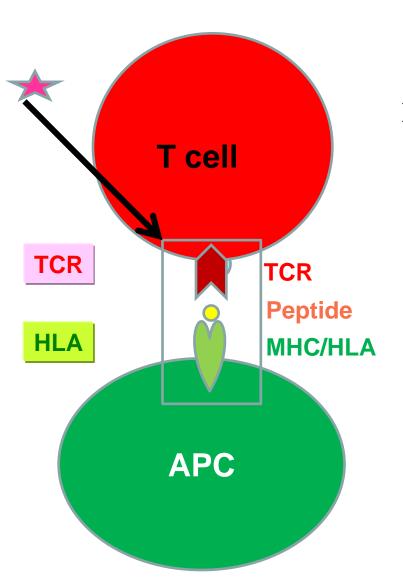
Immune self-reactivity triggered by drug-modified HLA-peptide repertoire

Patricia T. Illing^{1,2}, Julian P. Vivian³, Nadine L. Dudek², Lyudmila Kostenko¹, Zhenjun Chen¹, Mandvi Bharadwaj¹, John J. Miles^{4,5}, Lars Kjer-Nielsen¹, Stephanie Gras³, Nicholas A. Williamson², Scott R. Burrows⁴, Anthony W. Purcell^{2*}, Jamie Rossjohn^{3,5*} & James McCluskey^{1,6*}


Abacavir (ABC) binds to the F-pocket of HLA-B*57:01;

the ABC filled F-pocket leads to selection of peptides with valin at position 9 (instead of tryptophan / phenylalanin)

(ca 20% of peptides are altered, 80% not altered; described for very high ABC concentrations (100μg/ml)) (Illing P et al, Nature 2012)


Peptide repertoire: CBZ-HLA-B*1502 model

Using LC-MS/MS to investigate the peptides bound by HLA-B*1502.

- → No detection of CBZ covalently modified peptides.
- → No detection of altered self-peptide repertoire

TCR: Shared VB-11 CDR3 clonotypes of CBZ-stimulated CD8+ T cells from patients with CBZ-SJS/TEN. (oligoclonal)

Patient	VB	TRBV	TRBD	TRBJ	CDR3	Frequency
S1	B11	TRBV25-1*01	TRBD2*01	TRBJ2-1*01	CASSISGSYNEQFF	82%
	B11	TRBV25-1*01	TRBD2*02	TRBJ2-1*01	CASSGLAGVDNNEQFI	18%
S2	B11	TRBV25-1*01	TRBD2*01	TRBJ2-1*01	CASSISGSYNERFF	100%
S3	B11	TRBV25-1*01	TRBD2*01	TRBJ2-1*01	CASSISGSYNEQFF	50%
	B11	TRBV25-1*01	TRBD2*01	TRBJ2-1*01	CASSISGSYNEQSF	42%
	B11	TRBV25-1*01	TRBD2*01	TRBJ2-5*01	CASSEYMGIQETQYF	8%
S 4	B11	TRBV25-1*01	TRBD2*02	TRBJ2-1*01	CASSGLAGVDNNEQFI	E 39%
	B11	TRBV25-1*01	TRBD2*01	TRBJ2-7*01	CASSLGYEQYF	22%
	B11	TRBV25-1*01		TRBJ1-1*01	CASSDNTEAFF	11%
S 5	B11	TRBV25-1*01	TRBD2*01	TRBJ2-1*01	CASSISGSYNEQFF	100%
S6	B11	TRBV25-1*01		TRBJ2-7*01	CASSAHEQYF	83%
-	B11	TRBV25-1*01	TRBD1*01	TRBJ1-2*01	CASSEWGEVGKGYTF	17%
S7	B11	TRBV25-1*01	TRBD2*01	TRBJ2-1*01	CASSISGSYNEOFF	100%
S8	B11	TRBV25-1*01	TRBD1*01	TRBJ2-7*01	CASSEDRSPYEQYF	100%

VB-11-ISGSY (5/8) VB-11-GLAGVDN (2/8)

Is HLA-B*1502 as marker for phenytoin-induced SJS/TEN?

PHT-SJS/TEN

PHT-MPE/HSS

(case: 24 vs. PHT tolerant: 103) (case: 38 vs. PHT tolerant: 103)

Genotype HLA-A	case/tolerant(p value/ OR)	case/tolerant(p value/OR)
*1101	14/49(0.47/1.54)	28/49 (0.01/3.01)
*2402	6/32 (0.736/0.76)	8/32 (0.337/0.59)
*3101	Only weak association with	SJS/TEN .16)
HLA-B	Only weak accordance with	1 O O / I E I I
*1502	9/8 (p=4.3x 10 ⁻⁴ , OR: 7.13)	4/8 (0.856/1.40)
*4001	5/38(0.208/0.45)	11/38 (0.497/0.70)

JAMA August 6, 2014 Volume 312, Number 5

Original Investigation

Genetic Variants Associated With Phenytoin-Related Severe Cutaneous Adverse Reactions

Wen-Hung Chung, MD, PhD; Wan-Chun Chang, MS; Yun-Shien Lee, PhD; Ying-Ying Wu, MS; Chih-Hsun Yang, MD; Hsin-Chun Ho, MD; Ming-Jing Chen, MD; Jing-Yi Lin, MD; Rosaline Chung-Yee Hui, MD, PhD; Ji-Chen Ho, MD; Wei-Ming Wu, MD, PhD; Ting-Jui Chen, MD; Tony Wu, MD, PhD; Yih-Ru Wu, MD, PhD; Mo-Song Hsih, MD; Po-Hsun Tu, MD; Chen-Nen Chang, MD, PhD; Chien-Ning Hsu, PhD; Tsu-Lan Wu, PhD; Siew-Eng Choon, MD; Chao-Kai Hsu, MD, PhD; Der-Yuan Chen, MD, PhD; Chin-San Liu, MD, PhD; Ching-Yuang Lin, MD, PhD; Nahoko Kaniwa, PhD; Yoshiro Saito, PhD; Yukitoshi Takahashi, MD, PhD; Ryosuke Nakamura, PhD; Hiroaki Azukizawa, MD, PhD; Yongyong Shi, PhD; Tzu-Hao Wang, MD, PhD; Shiow-Shuh Chuang, MD, PhD; Shih-Feng Tsai, MD, PhD; Chee-Jen Chang, PhD; Yu-Sun Chang, PhD; Shuen-Iu Hung, PhD; for the Taiwan Severe Cutaneous Adverse Reaction Consortium and the Japan Pharmacogenomics Data Science Consortium

GWAS: 60 phenytoin-induced SCAR (38 SJS/TEN, 22 DRESS) v.s. 412 subjects of general population, Taiwan

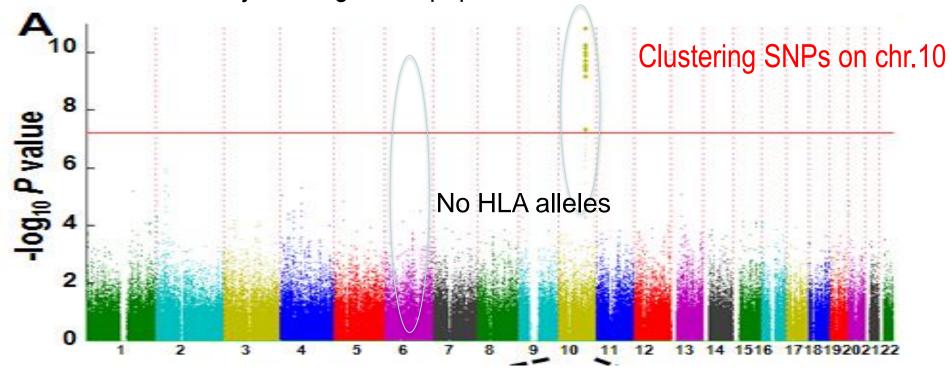
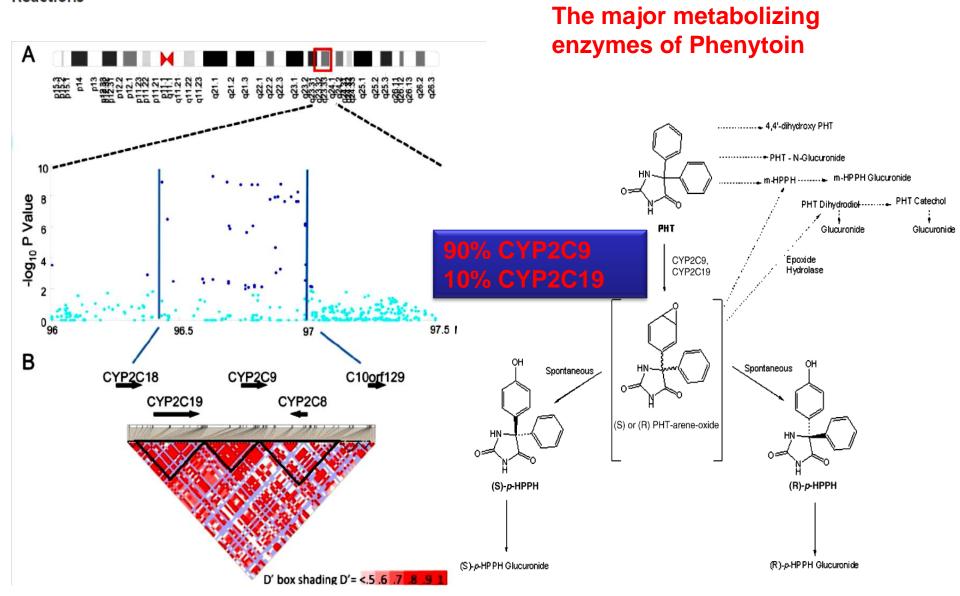
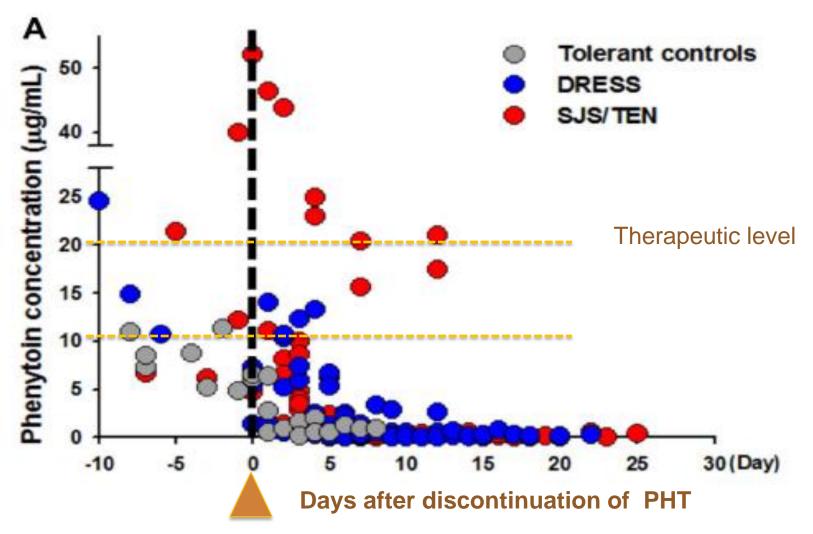



Figure 2. Linkage Disequilibrium Heat Maps for the *CYP2C* Region Associated With Phenytoin-Related Severe Cutaneous Adverse Reactions


CYP2C*3 is strongly associated with PHT-SJS/TEN & DRESS, but less with PHT-maculopapular exanthem

eTable 7. Association of rs1057910 (CYP2C9*3) with phenytoin-induced cutaneous adverse reactions.

Subgroup	Positive Participants	<i>P</i> value	ARR	Odds Ratio	Sensitivity (%)	Specificity (%)
(Participants number, N)	N (%)		(95% CI)	(95% CI)	(95% CI)	(95% CI)
Tolerant controls (130)	3 (2.3%)					
SCAR (90)	33 (36.7%)	5.7x10 ⁻¹²	-0.34 (-0.45 to -0.24)	25 (7.2-83)	36.7 (27-48)	97.7 (93-99)
SJS/TEN (48)	20 (41.7%)	1.2x10 ⁻¹⁰	-0.39 (-0.54 to -0.25)	30 (8.4-109)	41.7 (28-57)	97.7 (93-99)
DRESS (42)	13 (31.0%)	7.0x10 ⁻⁷	-0.29 (-0.43 to -0.14)	19 (5.1-71)	31.0 (18-47)	97.7 (93-99)
MPE (78)	9 (11.5%)	0.011	-0.092 (-0.17 to -0.017)	5.5 (1.5-21)	11.5 (6-21)	97.7 (93-99)
Population controls (412)	20 (4.9%)					
SCAR (90)	33 (36.7%)	1.3x10 ⁻¹⁴	-0.32 (-0.42 to -0.22)	11 (6.1-21)	36.7 (27-48)	95.2 (92-97)
SJS/TEN (48)	20 (41.7%)	1.3x10 ⁻¹¹	-0.37 (-0.51 to -0.23)	14 (6.8-29)	41.7 (28-57)	95.2 (92-97)
DRESS (42)	13 (31.0%)	8.6x10 ⁻⁷	-0.26 (-0.40 to -0.12)	8.8 (4.0-19)	31.0 (18-47)	95.2 (92-97)
MPE (78)	9 (11.5%)	0.033	-0.067 (-0.14 to 0.007)	2.6 (1.1-5.9)	11.5 (6-21)	95.2 (92-97)

[†]The reported data are based on the analysis of the dominant-inheritance model for the risk genotype. Abbreviations: ARR, absolute risk reduction; CI, confidence interval; DRESS, drug reaction with eosinophilia and systemic symptoms; MPE, maculopapular exanthema; SCAR, severe cutaneous adverse reactions; SJS/TEN, Stevens-Johnson syndrome/toxic epidermal necrolysis.

Poor metabolism of phenytoin in the PHT-SCAR patients

The levels of plasma phenytoin were measured by fluorescence polarization immunoassay analysis.

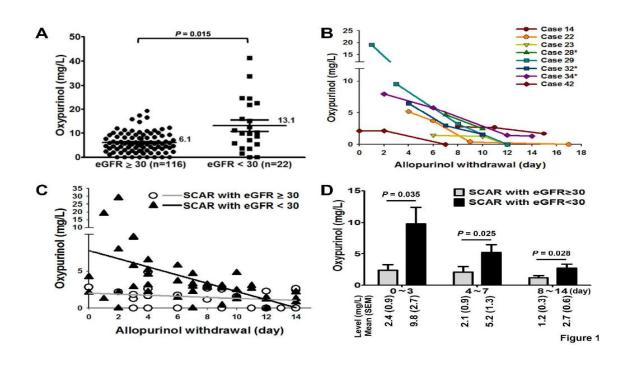
Same significant association of *CYP2C9*3 with PHT-SCAR* was observed in patients from Taiwan, Japan, and Malaysia

Figure 3. Distribution of the CYP2C9*3 Variant in Cases With Phenytoin-Related Severe Cutaneous Adverse Reactions and Population Controls

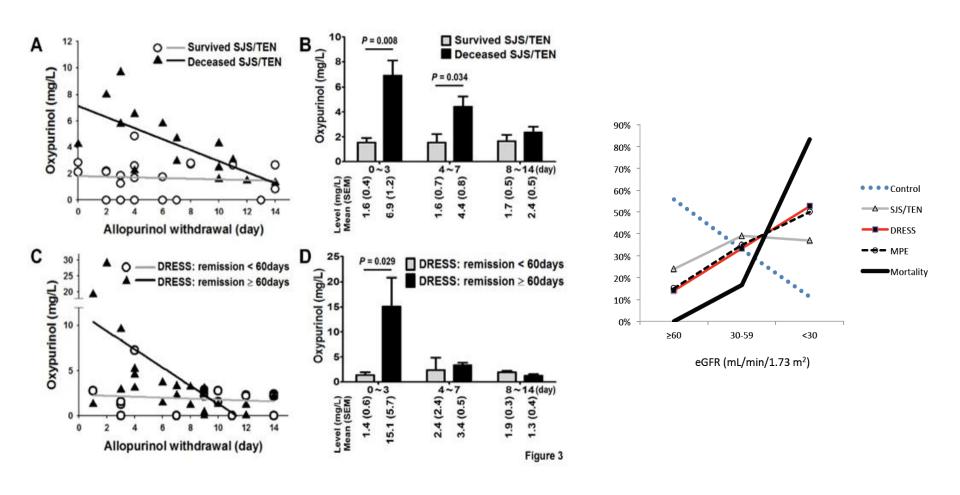
_	Cases of Phenytoin-Related Severe Cutaneous Adverse Reactions, No.		Population Controls, No.			-	─	
Subgroup	CYP2C9*3 Carriers	Total Participants	CYP2C9*3 Carriers	Total Participants	Odds Ratio (95% CI)	CYP2C9*3 Less Likely	CYP2C9*3 More Likely	Weight, %
SJS/TEN								
Taiwan	20	48	20	412	14.00 (6.75-29.02)		-	24.4
Japan	3	9	153	2869	8.88 (2.20-35.83)			6.6
Malaysia	1	4	21	374	5.60 (0.56-56.20)		<u> </u>	- 2.4
Subtotal		61		3655	11.96 (6.42-22.28)			33.4
Total No. of CYP2C9*3 carriers	s 24		194					
Heterogeneity: $\tau^2 = 0.00$; $\chi_2^2 = 0.00$; Test for overall effect: $z = 7.82$		12 = 0%						
DRESS								
Taiwan	13	42	20	412	8.79 (3.97-19.43)			20.5
Malaysia	1	2	21	374	16.81(1.02-278.24)		-	→ 1.6
Subtotal		44		786	9.22 (4.30-19.78)			22.2
Total No. of CYP2C9*3 carriers	s 14		41					
Heterogeneity: $\tau^2 = 0.00$; $\chi_1^2 = 0.00$ Test for overall effect: $z = 5.70$		J ² = 0%						
All severe cutaneous adverse rea	actions (SJS/	TEN and DRESS)						
Taiwan	33	90	20	412	11.35 (6.10-21.12)			33.5
Japan	3	9	153	2869	8.88 (2.20-35.83)			6.6
Malaysia	2	6	21	374	8.40 (1.46-48.54)			4.2
Subtotal		105		3655	10.63 (6.20-18.24)			44.4
Total No. of CYP2C9*3 carriers	s 38		194					
Heterogeneity: $\tau^2 = 0.00$; $\chi_2^2 = 0.00$ Test for overall effect: $z = 8.58$		I ² = 0%						
Total	76	210	429	8096	10.71 (7.48-15.35)			100
Heterogeneity: $\tau^2 = 0.00$; $\chi_7^2 = 1$. Test for overall effect: $z = 12.92$ Test for subgroup differences: χ	; P<.00001							
					(0.1 1	.0 10	100

Odds Ratio (95% CI)

Non-genetic factors: metabolism and drug hypersensitivity


Clinical and epidemiological research

EXTENDED REPORT


Insights into the poor prognosis of allopurinol-induced severe cutaneous adverse reactions: the impact of renal insufficiency, high plasma levels of oxypurinol and granulysin

Wen-Hung Chung, ^{1, 2, 3} Wan-Chun Chang, ⁴ Sophie L Stocker, ^{5, 6} Chiun-Gung Juo, ⁷ Garry G Graham, ^{5, 6} Ming-Han H Lee, ^{5, 6} Kenneth M Williams, ^{5, 6} Ya-Chung Tian, ^{3, 8} Kuo-Chang Juan, ^{3, 8} Yeong-Jian Jan Wu, ^{3, 9} Chih-Hsun Yang, ^{2, 3} Chee-Jen Chang, ^{10, 11} Yu-Jr Lin, ^{10, 11} Richard O Day, ^{5, 6} Shuen-lu Hung⁴

Ann Rheum Dis. 2014 Aug 12

Correlation between the levels of plasma oxypurinol and prognosis of allopurinol-SCAR

Allopurinol hypersensitivity is primarily mediated by dose-dependent oxypurinol-specific T cell response

J. Yun^{1,2}, J. Mattsson³, K. Schnyder¹, S. Fontana⁴, C. R. Largiadèr³, W. J. Pichler¹ and D. Yerly¹

¹Department of Rheumatology, Clinical Immunology and Allergology, Inselspital/University Hospital of Bern, Bern, Switzerland, ²Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland, 3Institute of Clinical Chemistry, Inselspital/University Hospital of Bern, Be Switzerland and ⁴Regional Blood Transfusion Service of the Swiss Red Cross, Bern, Switzerland

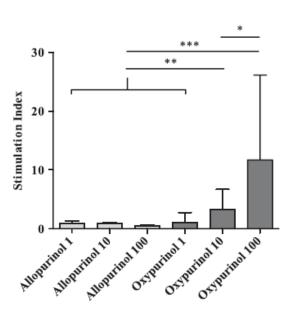


Fig. 1. Lymphocyte transformation test (LTT) results of allopurinol allergic patients with positive LTT (n = 12). Patients' peripheral blood mononuclear cells (PBMC) are tested against varying concentrations (1, 10 and 100 µg/mL) of allopurinol and oxypurinol. Bars represent median with interquartile range. *P < 0.05, **P < 0.01, ***P < 0.001.

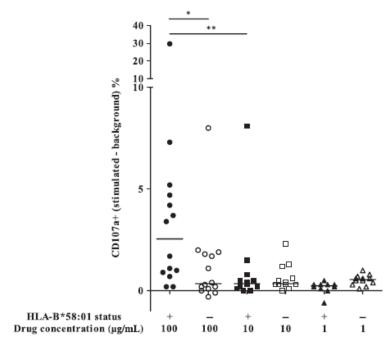
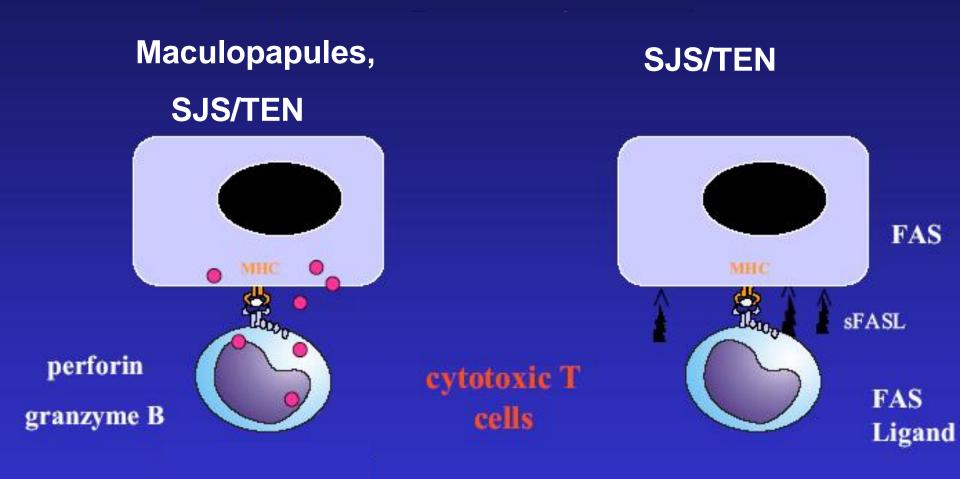
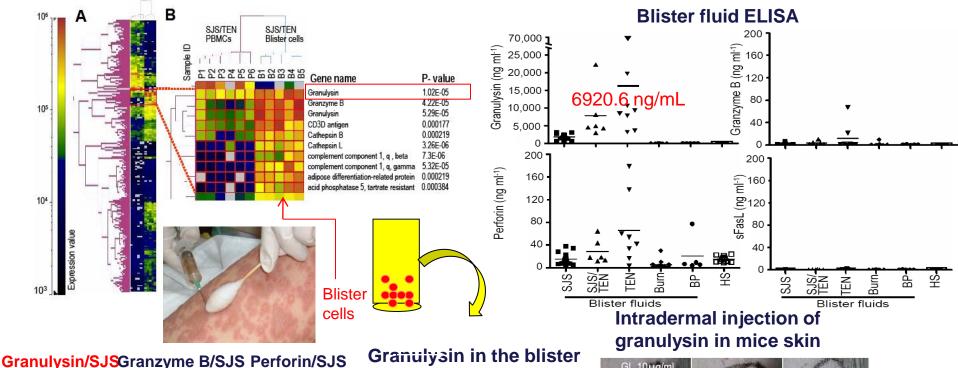



Fig. 3. The maximum observed differences in upregulation of CD107a on CD8 T cells in ALP/OXP-TCL from the background. The lines represent median values. Mann-Whitney U-test was used. *P < 0.05, **P < 0.01.

Cytotoxic mechanisms for extensive keratinocyte death in SJS/TEN

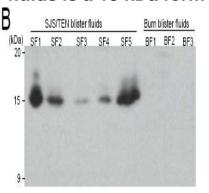
Nassif A. et al. J Allergy Clin Immunol. 2004

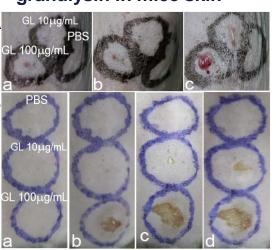

Viard I, et al. Science. 1998

nature medicine

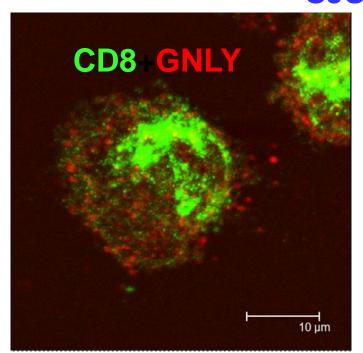
Granulysin is a key mediator for disseminated keratinocyte death in Stevens-Johnson syndrome and toxic epidermal necrolysis

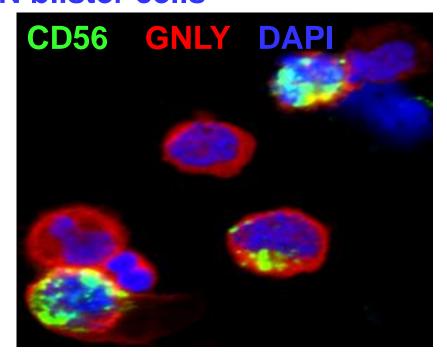
2008


Wen-Hung Chung^{1–3,9}, Shuen-Iu Hung^{2,4,9}, Jui-Yung Yang⁵, Shih-Chi Su², Shien-Ping Huang², Chun-Yu Wei², See-Wen Chin⁴, Chien-Chun Chiou¹, Sung-Chao Chu⁶, Hsin-Chun Ho¹, Chih-Hsun Yang¹, Chi-Fang Lu⁷, Jer-Yuarn Wu², You-Di Liao² & Yuan-Tsong Chen^{2,8}

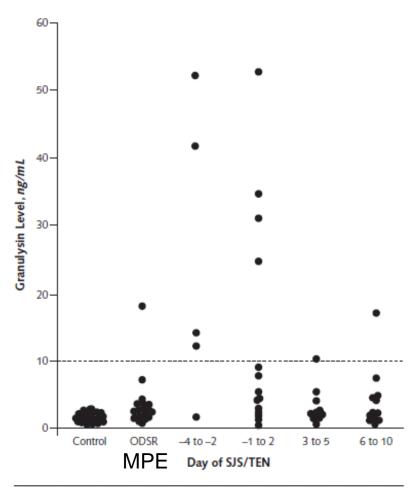


A B C C F F F F


FasL/SJS Granulysin/MPE Granulysin/health


Granulysin in the blister fluids is a 15 kDa form

Expression of granulysin (GNLY) in CTLs/NK/NKT cells of SJS/TEN blister cells



Surface marker	Cell Type	Percentage (average, n=6)		
CD3+ CD8+	CD8+ T cell	55.7 <u>+</u> 15%		
CD8+GL+	GNLY expressing CD8+ T cell	27.4 <u>+</u> 15.2 %		
CD3-CD56+GL+	GNLY expressing NK cell	31.1 <u>+</u> 17.4 %		
CD8+CD56+ GL+	GNLY expressing NKT cell	25.8 <u>+</u> 17.1 %		

Serum level Granulysin as a Marker for Early Diagnosis of the Stevens—Johnson Syndrome 514 6 October 2009 Annals of Internal Medicine Volume 151 • Number 7

Riichiro Abe, MD, PhD
Naoya Yoshioka, MS
Junko Murata, MD
Yasuyuki Fujita, MD
Hiroshi Shimizu, MD, PhD
Hokkaido University Graduate School of
Sapporo 060-8638, Japan

Figure. Granulysin levels of healthy control participants, patients with ODSRs, and patients with SJS/TEN.

ODSR = ordinary drug-induced skin reaction; SJS/TEN = Stevens-Johnson syndrome/toxic epidermal necrolysis.

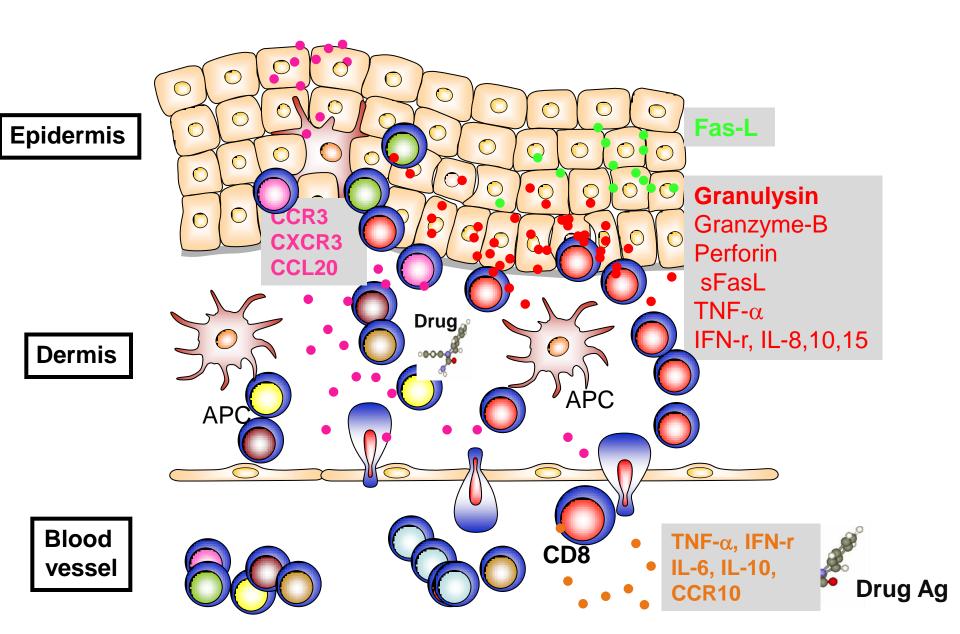
SJS caused by mortrin?

Comparison of *in vitro* tests to detect the causative drugs for the type IV (delayed type) drug hypersensitivity

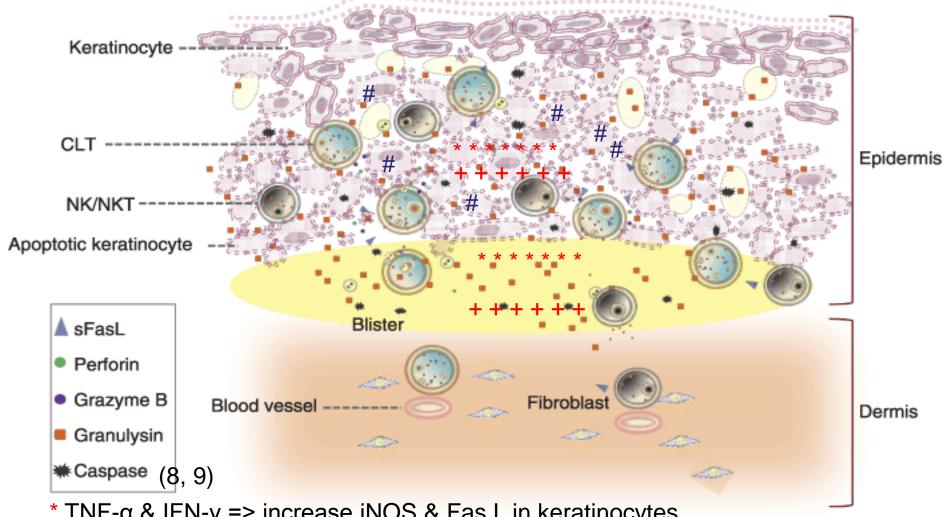
Test	Method	Limitation		
		Radioactivity; expensive equipment		
1. lymphocyte		Need well-trained technicians		
transformation test (LTT)	Measure the cell proliferation	Sensitivity for the detection of causality of MPE: 57%-78% Sensitivity for the detection of causality of SJS/TEN: <20%		
2. Detection of CD69 expression on Th1 cell surface	Flow cytometry	CD69: a marker of early T cells activation, is associated with Th1 T cell differentiation. Only 0.5-3% T cells expressing CD69		
3. Cytokine expression and secretion (IL2, IL5, IFNγ)	ELISA	These cytokines are not specific for delayed-type drug hypersensitivity Poor results of the sensitivity and specificity		

Nyfeler et al, 1997; Luque et al, 2001 Pichler et al, 2004, Fu and et al, 2012

Cytokines& chemokines in SJS/TEN

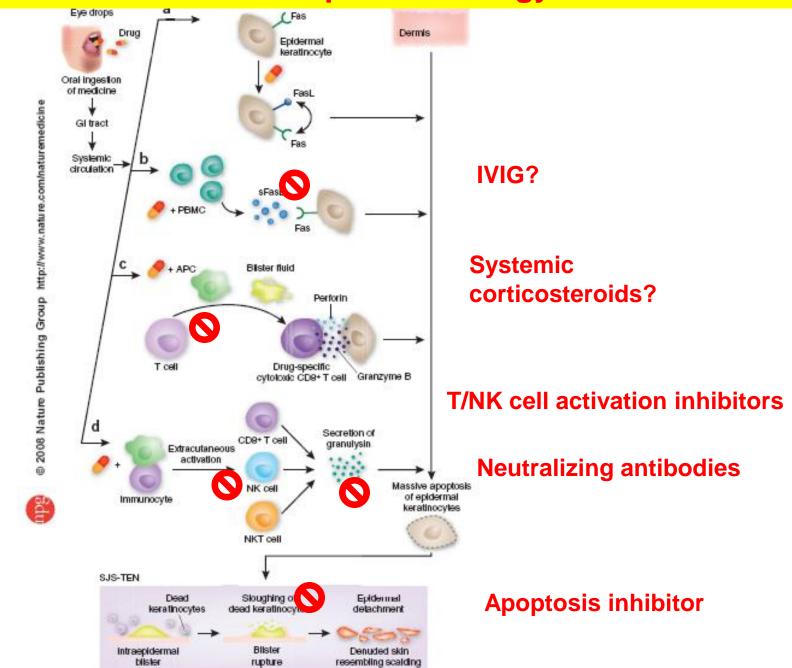

SJS or TEN related cytokines and chemokines.

Cytokines/chemokines	Functions	Blister cell	Blister fluid	Skin tissue	РВМС	Serum
TNF-α [55,60,62]	Inflammation, apoptosis	NS ^a	+	+	+	
IFN-γ [55,60,62]	Activation of immune cells	+	+	+	+	
IL-2 [55,62]		NS	NS	+	+	
IL-5 [62]	Acute phase response			+		
	Proinflammatory cytokine					
	Antiinflammatory cytokine					
IL-6 [58,59,62]	Acute phase response			+	+	+
	Pro-inflammatory and anti-inflammatory cytokine					
IL-10 [59,60]	Anti-inflammatory cytokine	NS	+		+	+
IL-12 [60]	Activation of NK and CTL		NS			
IL-13 [62]				+		
IL-15 [60]	Regulation of T and NK cell activation and proliferation		+/_			
IL-18 [60]	Stimulation of the growth of T lymphocytes		++			
CCR3 [62]	Binding chemokines (eotaxin, MCP-3, MCP-4, and RANTES)			+		
CXCR3 [62]	Regulation of leukocyte trafficking			+		
CXCR4 [62]	Chemotactic activity for lymphocytes			NS		
CCR10 [61]	Trafficking leukocytes				+	


TNF- α , tumor necrosis factor-alpha; IFN- γ , interferon-gamma; IL, interleukin; CCR, C-C chemokine receptor; CXCR, CX chemokine receptor; +, positive; -, negative.

^a NS, not significant.

Immune mechanism in SJS/TEN


Cell death mechanisms in SJS/TEN

- * TNF-α & IFN-γ => increase iNOS & Fas L in keratinocytes
- + Annexin A1=> formyl peptide recptor 1 induced Necroptosis of Keratinocytes # miR-18a-5p inhibits BCL2L10 of keratinocytes

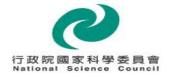
Chung WH, Allergol Int. 2010; Viard-Leveugle J Invest Dermatol. 2013; Nao Saito et al., Sci Transl Med 16 July 2014 Ichihara A et al, J Allergy Clin Immunol. 2014

From pathomechanism to therapeutic strategy for SJS/TEN

Acknowledgements

Department of Dermatology, National Yang-Ming University,

Drug Hypersensitivity Clinic Taiwan


& Research Center

Chang Gung Memorial

Hospital, Taiwan

USA, Australia Simon Mallal Elizabeth Philipps

Grants from the National Science Council, the Taiwan Shuen-lu Hung

Ren-Yo Pan

Yun-Ting Chen

See-Wen Chen

Kathy Chang

RegiSCAR

Maja Mockenhaupt

Jean-Claude Roujeau

Laurence Allanore

Sabine Le Gouvello

Teresa Bellon

Sylvia Kardaun

Rannakoe J Lehloenya

Gail Todd

J-SCAR

Tetsuo Shiohara

Hiroaki Azukizawa

Michiko Aihara

Riichiro Abe

Institute of Biomedical Sciences

Academia Sinica,

Taiwan

Yuan-Tsong Chen

Chu-Yu Wei

Cally Lin

Sally Lin

Tai-Ming Ko

US FDA

Jane Bai

Japan NIH

Yoshiro Saito

Nahoko Kaniwa

Ryosuke Nakamura

SEA-SCAR

Thirumoorthy

Thamotharampillai

Lee Haur Yueh

Choon Siew Eng

Francisca DC Roa