Recap: Day 1 Neil H Shear

University of Toronto

Shear: Syndromes etc

The current standard for diagnosing SJS/TEN is:

- 1. Measure granulysin levels
- 2. Determine the HLA genes
- 3. Clinical features
- 4. Clinical features and skin biopsy
- 5. ALDEN

Shear: Syndromes etc

The current standard for diagnosing SJS/TEN is:

- 1. Measure granulysin levels
- 2. Determine the HLA genes
- 3. Clinical features
- 4. Clinical features and skin biopsy
- 5. ALDEN

Chung: Pathogenesis etc.

The frequency and severity of drug hypersensitivity is a **function of the chemistry** of a drug **and** which of the following:

- 1. HLAs
- 2. CYPs
- **3.** Age of the patient
- 4. Biology of the individual
- 5. This is not a real equation

Chung: Pathogenesis etc.

The frequency and severity of drug hypersensitivity is a **function of the chemistry** of a drug **and** which of the following:

- 1. HLAs
- 2. CYPs
- **3.** Age of the patient
- 4. Biology of the individual
- 5. This is not a real equation

Pathogenesis of SJS/TEN

Werner J. Pichler, et al. J Allergy Clin Immunol 2011 Chung WH et al, J Dermatol Sci, 2012

Chung: HLA association

The association of HLA B*58:01 with allopurinol-induced SCAR is:

- 1. Universal across many ancestries
- 2. Only associated with SJS/TEN
- **3.** Statistically insignificant
- 4. Associated with renal insufficiency

Chung: HLA association

The association of HLA B*58:01 with allopurinol-induced SCAR is:

- **1.** Universal across many ancestries
- 2. Only associated with SJS/TEN
- **3.** Statistically insignificant
- 4. Associated with renal insufficiency

Validate the association between HLA-B*5801 and Allopurinol-SCAR in different populations

Table 1. HLA-B*5801 in Allopurinol-induced Severe Cutaneous Adverse reactions (SCAR).

Г			-			
	Study	1	2		3	4
	number		(European study)			
ſ	Study	Han Chinese ^a	Caucasian ^b	Non-European	Japanese ^c	Thai ^d
	population			ancestry	-	
				(two Asians)		
[Case	51/51 (100%)	15/27 (55%)	4/4 (100%)	7/13 (54%)	27/27 (100%)
	Control	20/135 (15%)	28/1822 (1.5%)		6/493 (1.2%)	7/54 (13%)
	Odds ratio	580.3	80		94.7	348.3
l	(95% C.I.)	(34.4 - 9780.9)	(34 - 187)		(24.4-367.3)	(19.2 - 6336.9)
[P value	4.7× 10 ⁻²⁴ *	<10 ⁻⁶ *		1.71×10 ⁻⁹	1.61×10 ⁻¹³
ſ	Reference	Hung, et al. PNAS,	Lonjou, et al. Pharmacogenetics and		Kaniwa, et al.	Wichittra, et al.,
	2005. Genomics, 2008.		Pharmacogenomics		Pharmacogenetics	
					, 2008.	Ũ
					Dainichi, et al.	and Genomics,
					Dermatology, 2007.	2009.

^aCase: Allopurinol-SCAR; Control: Tolerant control.

^bCase: Allopurinol-SJS/TEN; Control: A mixed European population.

^cCase: Allopurinol-SJS/TEN; Control: Japanese population.

^d Case: Allopurinol-SJS/TEN; Control: Tolerant control.

* Adjusted using Bonferroni's correction for multiple comparisons to account for observed alleles.

Chung: Carbamazepine

Carbamazepine can induce antigen presenting cells to interact with immune cells directly according to:

- **1**. The hapten hypothesis
- 2. The p-i concept
- 3. Altered self peptide repetoire
- 4. The theory of everything

Chung: Carbamazepine

Carbamazepine can induce antigen presenting cells to interact with immune cells directly according to:

- **1**. The hapten hypothesis
- 2. The p-i concept
- 3. Altered self peptide repetoire
- 4. The theory of everything

How HLA and TCR recognize drugs in drug hypersensitivity?

APC

T cells

	Hapten concept	p-i concept	altered self-peptide repertoire
Peptide-drug interaction	Covalent binding	Non-covalent	Non-covalent
Drug activity	tivity Reactive inert (e.g penicillin) (e.g.carbamazepine)		Inert (e.g. abacavir)
Ag processing	Processing, Non- processing	Non-processing	Processing
MHC restriction	MHC-restricted	MHC-restricted, non- restricted	MHC-restricted
TCR types	oligoclonal	Oligoclonal,polyclonal	polyclonal

Ren-You Pan et al., Current Immunology Reviews, 2014; Pichler WJ, Allergology International 2006 Jan;55; Illing P et al, Nature 2012

Phillips: Unmet needs

Which of the following was NOT a **challenge** as identified by Prof Phillips?

- **1**. Defining the population.
- 2. Biological samples.
- **3.** Pharmacogenomic studies
- 4. Prediction & Prevention
- 5. Finding the bathrooms

Phillips: Unmet needs

Which of the following was NOT a **challenge** as identified by Prof Phillips?

- **1**. Defining the population.
- 2. Biological samples.
- **3.** Pharmacogenomic studies
- 4. Prediction & Prevention
- **5.** Finding the bathrooms

Weaknesses

- Relevant to all but "owned" by none
 - Lack of cohesive patient, provider, or scientific constituency
- Perception as rare and stochastic
- "Fear factor": Industry constraints/litigation environment
- Burden of disease and cost to healthcare/industry not adequately measured
- Poor provider education
- Few experts and "succession planning"
- Translational hurdles

Opportunities

- Potential for good global return on investment
 - Cost-effectiveness of treatment on a population level
 - Reduced morbidity and mortality, improved drug development pathway and drug safety
- Insights into mechanisms of other hypersensitivity syndromes (roadmap for study)
 - Capacity building for laboratory innovation
- Electronic health record reform; evidence based approaches to mine data from E.H.R.
- Creation of multidisciplinary research teams and new strategic alliances

International Experience (I) **• Europe:** SCAR – EuroSCAR – RegiSCAR Many successes & High quality validation Good funding (Industry) & Succession... Taiwan Drug Relief Fund Able to support major country-wide large population studies **•iSAEC**: Private-public partnership Also international; important projects Thailand: National-hospital funding Pharmacogenomic cards

Case Finding...

USA FDA

- Pro/con of multiple data systems
- Future: "DISIN" Network?

Electronic phenotyping

- Possible, rich context, large numbersThailand
 - Functional national data collection & validation
 - Genetic testing

Teri's Goals

Objectives:

- 1. Review current state of knowledge of surveillance, pathogenesis, and treatment
- 2. Examine role of genomics and PGx in etiology, treatment, and eradication of preventable cases
- **3**. Identify gaps, unmet needs, and priorities for future research to eliminate SJS/TEN globally