RetroSeq: A Tool to Discover Somatic Insertions of Retrotransposons

Elena Helman

The Cancer Genome Atlas Symposium November 18, 2011

Retrotransposons

- Retrotransposons
 - Mobile genomic elements that copy and paste themselves across the genome via an RNA intermediate

Drivers of genome evolution

- Comprise >40% of the human genome
- Most are no longer active...but some remain "hot"
- Major source of genetic variation
 - ~10,000 polymorphic sites
 - Estimated 600-1000 retrotransposon differences between two European individuals

Abundant retrotransposon elements

- L1 (LINE-1)
 - 6,000 bp long
 - 500,000 elements (17% of genome)
 - 80-100 still active
 - Autonomous
 - ORF1: RNA-binding protein
 - ORF2: endonuclease and reverse transcriptase
- ALU
 - 300 bp long
 - >1 million elements (11% of the genome)
 - Relies on L1 retrotransposition machinery

Effect of retrotransposon insertions

- Insertions affect the genome:
 - Disrupt protein function
 - Affect promoters
 - Create or disrupt sites for RNA splicing
 - Lead to further genomic rearrangement
- Aberrant retrotransposons insertions in cancer:
 - L1 in APC exon in colorectal cancer (Miki et al., 1992)
 - L1 in MYC intron in breast cancer (Morse et al., 1988)
 - 9 L1 insertions in 6 out of 20 lung tumors (Iskow et al., 2010)

Identify the extent of somatic retrotransposon insertions throughout the cancer genome, using paired-end sequencing data

1. Align reads to retrotransposon consensus sequence

3. Identify putative retrotransposon insertion position

Somatic retrotransposon insertion

Normal genome

Simulation Performance

• Inserted 226 L1s and 732 ALUs into BAM file

	Inserted	Sensitivity	Specificity
L1	226	100%	98.3%
ALU	732	99.9%	99.8%

LINE-1 insertions in CRC

200

9

20

20

9

S

- 9 WGS colorectal tumor/normal pairs
- Retrotransposon consensus sequence database
 - L1 family
 - GIRI Repbase

Composition of LINE-1 insertions

Future studies

• Experimental validation in progress

- Extension to other tumor types
- Orthogonal data integration
 - Expression
 - Methylation

- RetroSeq leverages paired-end sequencing data to computationally localize somatic retrotransposon insertions
- Discovered novel retrotransposon insertions present in tumor, but not matched normal tissue
 - Insertions in genes and regulatory regions
- Evidence for reactivation of retrotransposon mobilization in cancer

Acknowledgements

The Cancer Genome Atlas

ŧ ļ

Understanding genomics to improve cancer care

- Mike Lawrence
- Chip Stewart
- Gad Getz
- Matthew Meyerson
- Broad Institute Cancer Genome Analysis Group

