Cancer Epigenetics

Peter W. Laird

USC Epigenome Center
USC/Norris Comprehensive Cancer Center
Keck School of Medicine
University of Southern California
DNA Methylation Alterations in Cancer

NORMAL CELL

• Methylated CpG Island promoters are transcriptionally silenced in cancer
• Areas of low-CpG density may lose DNA methylation in cancer

GLOBAL HYPOMETHYLATION

FOCAL HYPERMETHYLATION

CANCER CELL

• CpG Islands may acquire abnormal hypermethylation in cancer
• Methylated CpG Island promoters are transcriptionally silenced in cancer
• Areas of low-CpG density may lose DNA methylation in cancer
Epigenetic Silencing of \textit{BRCA1} in Serous Ovarian Cancer

- Red: Fallopian Tubes
- Purple – Somatic Mutation
- Green – Germline Mutation
- Blue – Epigenetic Silencing
 - Hollow – Not Sequenced

Outline

• CpG Island Methylator Phenotypes - Glioblastoma
G-CIMP Is a Subset of Proneural Glioblastomas with Better Survival

Noushmehr et al. 2010 Cancer Cell 17, 510
Glioma-CpG Island Methylator Phenotype (G-CIMP) (TCGA)

G-CIMP is Tightly Linked to IDH1 Mutation

Noushmehr et al. 2010 Cancer Cell 17, 510
Model for G-CIMP

IDH1 Mutation Causes Aberrant CpG Island Methylation

…the does not explain G-CIMP *IDH1*\(^{wt}\) cases
Outline

- CpG Island Methylator Phenotypes - Glioblastoma
- Cross-tumor Comparisons
Comparison of 2,275 TCGA Cancer Samples and 409 Normal Tissues

3,450 Probes

409 Normal

2,275 Cancer Samples
Outline

• CpG Island Methylator Phenotypes - Glioblastoma

• Cross-tumor Comparisons

• Bisulfite Sequencing - Epigenetic Origins of Cancer
TCGA Whole Genome Bisulfite Sequencing (WGBS)

Table: TCGA Sample Type Description

<table>
<thead>
<tr>
<th>TCGA Sample</th>
<th>Type</th>
<th>Description</th>
<th>Bisulfite non-conversion</th>
<th>Mean cvg</th>
<th># CpGs</th>
<th>1x cvg (% CpGs)</th>
<th>5x cvg (% CpGs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA-3518-01A</td>
<td>COAD</td>
<td>MSI-H</td>
<td>0.92%</td>
<td>23x</td>
<td>51.8M</td>
<td>92%</td>
<td>90%</td>
</tr>
<tr>
<td>AA-3518-11A</td>
<td>COAD - N</td>
<td></td>
<td>0.86%</td>
<td>22x</td>
<td>51.5M</td>
<td>91%</td>
<td>90%</td>
</tr>
<tr>
<td>A7-A0CE-01A</td>
<td>BRCA</td>
<td>Basal-like subtype</td>
<td>0.31%</td>
<td>19x</td>
<td>50.7M</td>
<td>90%</td>
<td>86%</td>
</tr>
<tr>
<td>A7-A0CE-11A</td>
<td>BRCA - N</td>
<td></td>
<td>0.36%</td>
<td>19x</td>
<td>50.3M</td>
<td>89%</td>
<td>85%</td>
</tr>
<tr>
<td>AA-3518-01A</td>
<td>UCEC</td>
<td>Grade 1 endometrioid</td>
<td>0.31%</td>
<td>19x</td>
<td>52.1M</td>
<td>92%</td>
<td>90%</td>
</tr>
<tr>
<td>AA-3518-11A</td>
<td>UCEC - N</td>
<td></td>
<td>0.31%</td>
<td>18x</td>
<td>51.8M</td>
<td>92%</td>
<td>89%</td>
</tr>
<tr>
<td>60-2722-01A</td>
<td>LUSC</td>
<td>Classical subtype</td>
<td>0.30%</td>
<td>21x</td>
<td>51.8M</td>
<td>92%</td>
<td>89%</td>
</tr>
<tr>
<td>60-2722-11A</td>
<td>LUSC - N</td>
<td></td>
<td>0.61%</td>
<td>5x</td>
<td>39.3M</td>
<td>69%</td>
<td>33%</td>
</tr>
</tbody>
</table>

- In Production: 3 Lung squamous Tumors, 3 Breast Tumors
- In Sample Selection: 2 GBM Tumors, 3 Renal Cell Kidney Pairs
Whole Genome Bisulfite Sequencing of TCGA Tumors and Normal Tissues

MP: Methylation Prone Regions

COAD
LOW METHYLATION
HIGH
COLON NORMAL
LOW

BRCA
LOW METHYLATION
HIGH
BREAST NORMAL
LOW

UCEC
LOW METHYLATION
HIGH
ENDOMETRIUM
LOW

LUSC
LOW METHYLATION
HIGH
ENDOMETRIUM
LOW
Methylation-Prone Elements are Enriched for Stem-Cell Polycomb Marks

ENCODE chromatin types from J. Ernst et al. Nature 2011
- Active promoter: K4me3, K9ac, K27ac
- Weak promoter: K4me3, K9ac
- Poised promoter: K4me1/2, K27me3

- Strong enhancer: K4me1/2, K9ac, K27ac
- Weak enhancer: K4me1/2
- CTCF Insulator: CTCF
Transcriptional Potential Associated with Histone H3 Methylation

ARTKQTARKSTG ⋯ ⋯ RKSAP — H3

MLL, SET7/9 (TRITHORAX ACTIVATION MARK)

EZH2 (POLYCOMB REPRESSIVE MARK - PRC2)

Polycomb Target Genes in Embryonic Stem Cells:
• Master regulators of differentiation and development
• Poised to be turned on during differentiation
• Bivalent epigenetic state: Active (H3K4me3) and Repressive Marks (H3K27Me3)
Polycomb Target DNA Methylation Starts in Normal Tissues

16,846 CpG Probes
1,000 ES-Cell Polycomb Targets
Model: Polycomb Crosstalk Leads to Cumulative Stochastic Methylation

Abnormal DNA Methylation at ES-Cell Polycomb Targets Even though Polycomb Repressors no Longer Occupy these Promoters

Widschwendter at al. (2007) Nature Genetics 39, 157
This Model....

• Would explain the DNA methylation behavior for about half of cancer-specifically methylated genes

• Is consistent with the observation of epigenetic field effects adjacent to tumors

• Is consistent with the stem-cell like behavior of cancer cells and with the evidence for tumor-initiating cells

• Suggests that therapeutic cloning strategies using human ES cells or IPS cells should incorporate screening for PRC2 DNA methylation abnormalities

• Suggests that the first steps of oncogenesis may be epigenetic

Widschwendter at al. (2007) Nature Genetics 39, 157
Hinoue et al. (2011) Genome Research, In Press
Outline

• CpG Island Methylator Phenotypes - Glioblastoma

• Cross-tumor Comparisons

• Bisulfite Sequencing - Epigenetic Origins of Cancer

• Bisulfite Sequencing – Long Range Instability
Methylation-Prone CpG Islands

Berman et al. 2011 Nature Genetics 43, In Press
Regions of Focal Hypermethylation and Long-Range Hypomethylation Coincide

Part of Chromosome 3q
Genes
CpG Islands

ES-Cell Methylation
Normal Colon Methylation
Colon Tumor Methylation
Hypermethylated in Cancer
Hypomethylated in Cancer

Berman et al. 2011 Nature Genetics 43, In Press
A Subset of the Cancer Epigenome Has Partially Lost Methylation

20-kb Windows

Berman et al. 2011 Nature Genetics 43, In Press
Regions of Focal Hypermethylation and Long-Range Hypomethylation Coincide

Berman et al. 2011 Nature Genetics 43, In Press
Outline

• CpG Island Methylator Phenotypes - Glioblastoma

• Cross-tumor Comparisons

• Bisulfite Sequencing - Epigenetic Origins of Cancer

• Bisulfite Sequencing – Long Range Instability

• Bisulfite Sequencing – Nuclear Architecture
Hypomethylated “Oceans” Correspond to Lamin Attachment Domains

Hypomethylated in Cancer
Hypermethylated in Cancer

Part of Chromosome 3q
Genes
CpG Islands

ES-Cell Methylation
Normal Colon Methylation
Colon Tumor Methylation
Hypermethylated in Cancer
Hypomethylated in Cancer

non-TCGA Colon PMD
TCGA COAD PMD
TCGA UCEC PMD
TCGA BRCA PMD
TCGA LUSC PMD
IMR90 PMD
Nuclear Lamina-Associated
Non-Lamina-Associated

Berman et al. 2011 Nature Genetics 43, In Press
Spatial Organization of the Epigenome

- Lamin Attachment
- Late Replication
- Epigenetic Instability in Cancer

- Active Transcription
- Epigenetically Stable in Cancer

Bas Van Steensel, *Curr Opin Cell Biol* 2010
SUMMARY

Epigenetic Subtypes
- CpG Island Methylator Phenotype in Glioblastoma – *IDH1* Mutation

Epigenetic Origins of Cancer
- Polycomb Repressor Binding in ES-Cells Predisposes to Aberrant DNA Methylation in Cancer
- Polycomb Repressor Predisposition Seen Across Cancer Types

The Role of Nuclear Architecture in Epigenetic Instability
- Focal Hypermethylation and Long-Range Hypomethylation Coincide in Partially Methylated Domains (PMDs)
- Epigenetically Unstable PMDs are Associated with Nuclear Lamina Attachment and Late-Replicating Regions
Acknowledgements

USC EPIGENOME CENTER
Dan Weisenberger
Ben Berman
Houtan Noushmehr
Toshi Hinoue
Hui Shen
Tim Triche Jr.
Simeen Malik
Swapna Mahurkar
Fei Pan
Yaping Liu
Zack Ramjan
Jonathan Buckley
David Van Den Berg
Joe Aman
Philip Lai

COLLABORATORS
Steve Baylin
Jim Herman
Leslie Cope
Kornel Schuebel
Ken Aldape

TCGA RESEARCH NETWORK

FUNDING
NIH/NCI
Canary Foundation
OCRF
CIRM
EIF