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Analysis of disease samples like automotive repair 
(or detective work or other sleuthing) 
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… 

Sleuths use as much  
knowledge as possible. 
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Much Cell Machinery Known: 
Gene circuitry now available. 
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Integration key to correct 
interpretation of gene function 

• Expression not always an indicator of activity 
• Downstream effects often provide clues 

TF 
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TF 
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• Need multiple data modalities to get it right. 

Integration key to correct 
interpretation of gene function 

TF 

Expression -> TF ON 

BUT, targets are amplified 

Lowers our belief 
in active TF because 
explained away by 
cis evidence. 

Copy Number -> TF OFF 
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Probabilistic Graphical Models: 
A Language for Integrative Genomics 

• Generalize HMMs, Kalman Filters, Regression, Boolean Nets, etc. 
• Language of probability ties together multiple aspects of gene function 

& regulation 
• Enable data-driven discovery of biological mechanisms 
• Seminal work: J. Pearl, D. Heckerman, E. Horvitz, G. Cooper, R. Schacter, 

D. Koller, N. Friedman, M. Jordan, … 
• Recent work: E. Segal, E Schadt, A. Hartemink, D. Pe’er, …  

Nir Friedman, Science (2004) - Review 
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Integration Approach: Detailed models of 
gene expression and interaction 

MDM2 

TP53 



10 

Integration Approach: Detailed models 
of expression and interaction 

MDM2 

TP53 

Two Parts: 

1. Gene Level Model 
 (central dogma) 

2. Interaction Model 
 (regulation) 
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PARDIGM Gene Model to Integrate Data 

Vaske et al. 2010. Bioinformatics 

1. Central Dogma-Like 
Gene Model of Activity 

2. Interactions that  
connect to specific points 
in gene regulation map 
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Integrated Pathway Analysis for Cancer 

• Integrated dataset for downstream analysis 
• Inferred activities reflect neighborhood of influence around a gene. 
• Can boost signal for survival analysis and mutation impact 

Multimodal Data 

CNV 

mRNA 

meth 

Pathway Model 
of Cancer 

Cohort Inferred Activities 
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TCGA Ovarian Cancer 
Inferred Pathway Activities 
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Ovarian: FOXM1 pathway altered 
in majority of serous ovarian tumors 
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FOXM1 central to cross-talk between 
DNA repair and cell proliferation 
in Ovarian Cancer 

TCGA Network. Nature 2011 
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Ovarian: IPLs statify by survival time 
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MYC is characteristically altered in CRC 

• Cohort-wide disruption of C-
MYC 

• Common downstream 
consequence of WNT and TGFB 
pathway alterations. 
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Pathway Signatures: Differential Subnetworks 
from a “SuperPathway” 

Pathway Activities 

Pathway Activities 
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Pathway Signatures: Differential Subnetworks 
from a “SuperPathway” 

Pathway Activities 

Pathway Activities 
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Pathway Signatures: Differential Subnetworks 
from a “SuperPathway” 

SuperPathway Activities 

SuperPathway Activities 

Pathway 
Signature 
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One large highly-connected 
component (size and connectivity 

significant according to permutation 
analysis) 

Higher activity in ER- 

Lower activity in ER- 

Triple Negative Breast Pathway Markers 
Identified from 50 Cell Lines 

980 pathway concepts 
1048 interactions 

HIF1A/ARNT 

Characterized by 
several “hubs’ IL23/JAK2/TYK2 

Myc/Max 

P53 
tetramer 

ER 

FOXA1 

Sam Ng, Ted Goldstein 
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Master regulators predict response to drugs: 
PLK1 predicted as a target for basal breast 

Up 
Down 

• DNA damage network is 
upregulated in basal 
breast cancers 

• Basal breast cancers are 
sensitive to PLK inhibitors 
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Heiser et al. 2011 PNAS 

Ng, Goldstein 
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• HDAC Network is down-
regulated in basal breast 
cancer cell lines 

• Basal/CL breast cancers are 
resistant to HDAC inhibitors 

VORINOSTAT HDAC inhibitor 

HDAC inhibitors predicted for luminal breast 

Heiser et al. 2011 PNAS 

Ng, Goldstein 
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Predicting the Impact of Mutations 
On Genetic Pathways 

M 

Inference using all 
neighbors 

M 

Inference using 
downstream 
neighbors 

M 

Inference using 
upstream neighbors 

PATHWAY 
DISCREPANCY 

Sam Ng 
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RB1 Loss-of-Function (GBM) 

Discrepancy Score 
PARADIGM downstream 
PARADIGM upstream 
Expression 
Mutation 

RB1 

Sam Ng 
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RB1 Network (GBM) 

Sam Ng 
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TP53 Network 
PARADIGM upstream 
Expression 
NFE2L2 Mutation 

Sam Ng 
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Pathway discrepancy gives orthogal view 
of the importance of mutations 

• Enables probing into infrequent events 
• Can detect non-coding mutation impact (pseudo FPs)  
• Can detect presence of pathway compensation for those seemingly 

functional mutations (pseudo FPs) 
• Extend beyond mutations 
• Limited to genes w/ pathway representation 
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Sam Ng 
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Correlates to mutations? 

Ted Goldstein 
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What about when we don’t have 
pathway information for a gene? 

Clinical information on samples 

Ted Goldstein 

Pathway Inferred Levels 
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Mutation Association to Pathways 

• What pathway activities is a mutation’s presence associated? 
• Can we classify mutations based on these associations? 
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Mutation Association to Pathways 

• What pathway activities is a mutation’s presence associated? 
• Can we classify mutations based on these associations? 

(Note: CRC figure below; soon for BRCA) 
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Mutation Association to Pathways 

• What pathway activities is a mutation’s presence associated? 
• Can we classify mutations based on these associations? 
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Mutation Association to Pathways 

• What pathway activities is a mutation’s presence associated? 
• Can we classify mutations based on these associations? 

(Note: CRC figure below; soon for BRCA) 
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Mutation Association to Pathways 

• What pathway activities is a mutation’s presence associated? 
• Can we classify mutations based on these associations? 

(Note: CRC figure below; soon for BRCA) 
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Ted Goldstein 
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Mutation Association to Pathways 

• What pathway activities is a mutation’s presence associated? 
• Can we classify mutations based on these associations? 

(Note: CRC figure below; soon for BRCA) 
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Evidence for 
AHNAK2 acting 
PI3KCA-like? 

Ted Goldstein 
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Pan-Cancer: Pathway signatures will connect 
molecular subtypes across tissues 

• Projection of CRC modulated pathways onto 
GBM and OVCA 
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Global Pan-Cancer Map 

1382 tumor samples: 
 377 OV 
 69 KIRC 
 251 GBM 
 339 BRCA 
 117 LUSC 
 21 LUAD 
 67 READ 
 141 COAD 
 

unpublished 
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Is there a basal disease? – BRCA vs OVCA 

• TCGA ovarian more like basal than luminal breast 

Basal vs Ovarian 

Luminal B vs Ovarian 

Luminal A vs Ovarian 

CL basal vs TCGA basal 
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Pearson Correlation 

Olga Botvinnik 
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Summary 

• Model information flow to accurately model gene 
activity using multi-modal data. 

• Focus first on known biology 
• Now going after novel biology (new genes and 

interactions) 
• Patient stratification into pathway-based subtypes 
• Sub-networks are predictive markers and can be used 

to simulate scenarios (like drug inhibition) 
• Even rare mutations can be assessed for biological 

significance. 
• Enables multi- and pan-cancer analyses 
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Connecting the dots: 
A drug for “rare toe carcinoma” (RTCA) 

• TCGA cataloging many signatures of tumors: mutation 
spectrum, altered genes, and pathway activities 

– E.g. patient presents w/ RTCA and has HER2 amplification 

• Subtypes, and ultimately single samples can be connected 
by these signatures 

– RTCA signature checks out w/ PAM50 

• We should also engage signatures from external datasets to 
inform TCGA data (e.g. Connectivity Map) 

– Signature matches lapatinib sensitivity signature 

• Provide a basis to bootstrap clinical findings 
– Prescribe lapatinib to RTCA patient 

 
 



42 

Shout out to the Broad Team 

• PARADIGM now included in Firehose 
– Public now can access CPU-intensive results 

 
• Special THANKS to Daniel DeCara. 
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