Patient-specific pathway
analysis using PARADIGM
identifies key activities In

multiple cancers

Josh Stuart, UC Santa Cruz
TCGA Symposium
National Harbor, Nov 18, 2011



Flood of Data Analysis Challenges
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Flood of Data Analysis Challenges

g \ultiple, Possibly
i Conflicting Signals

This is What it
Does to You




Analysis of disease samples like automotive repair
(or detective work or other sleuthing)

Patient Sample 1

Patient Sample 2
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Much Cell Machinery Known: E
Gene circuitry now available. @;
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Integration key to correct

interpretation of gene function

Expression not always an indicator of activity ~—
Downstream effects often provide clues gy L e

Expression of 3 transcription factors:

high . high . low @

Inference: Inference: Inference:

TFis ON TF is OFF TF is ON

(expression (high expression (low-expression
reflects but inactive) but active )

6 activity) The Cancer Genome Atlas &




Integration key to correct

interpretation of gene function

Need multiple data modalities to get it right.

BUT, targets are amplified

Expression -> TF ON — Copy Number -> TF OFF
. — Lowers our belief
\ = In active TF because
! l 7 — 1 | explained away by
— . .
‘ ——==_ | |CIsevidence.
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Probabilistic Graphical Models:
A Language for Integrative Genomics

Inferring Cellular Networks '" —
Using Probabilistic Graphical Models -

Nir Friedman, Science (2004) - Review @ @ G -

Generalize HMMs, Kalman Filters, Regression, Boolean Nets, etc.

Language of probability ties together multiple aspects of gene function
& regulation

Enable data-driven discovery of biological mechanisms

Seminal work: J. Pearl, D. Heckerman, E. Horvitz, G. Cooper, R. Schacter,
D. Koller, N. Friedman, M. Jordan, ...

Recent work: E. Segal, E Schadt, A. Hartemink, D. Pe’er, ...

8 The Cancer Genome Atlas @




Integration Approach: Detailed models of

gene expression and interaction
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Integration Approach: Detailed models i
of expression and interaction

Two Parts:

1. Gene Level Model

Coowz>—
J_\ (central dogma)
<

2. Interaction Model
(regulation)

10 The Cancer Genome Atlas @



PARDIGM Gene Model to Integrate Data

Transcriptional Translational Intracellular and
Regulation Regulation, Extracellular

Protein Degradation Signaling
GeneCopy Expression Protein
Number State Level

- T T~ - T TS OVariable
Array CGH, Transcriotomics 7 Proteomics, ) 7 Proteomics, ) . .
SNP chips p \ \mutations _ \ \mutations _ M Factor - interaction term

— o - —_—— -

1. Central Dogma-Lik'é
Gene Model of Activity

Protein
Activity

2. Interactions that
connect to specific points
In gene regulation map

11 Vaske et al. 2010. Bioinformatics The Cancer Genome Atlas @B




MUltImOdal Data Pathway Model Inferred ACtIVItleS P =
of Cancer

- Integrated dataset for downstream analysis
- Inferred activities reflect neighborhood of influence around a gene.
- Can boost signal for survival analysis and mutation impact

12 The Cancer Genome Atlas @B




TCGA Ovarian Cancer

Inferred Pathway Activities

| Patient Sample_S (247)
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Ovarian: FOXM1 pathway altered

in majority of serous ovarian tumors

Patient Samples (247)
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FOXM?1 central to cross-ta
DNA repair and cell proliferation
in Ovarian Cancer

74

Cell Cycle
Progression

Cell Cycle Related DNA Damage Repair

8 15 TCGA Network. Nature 2011
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Ovarian: IPLs statify by survival time

Integrated Pathway Activities (IPAs)

log-rank p: 4.26e-03
cox: —0.72; p: 5.18e-03
purple cluster (n =71)
— all others (n =315)
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Pathway Signatures: Differential Subnetwo

from a “SuperPathway”

SuperPathway Activities

Pathway
Signature

l

The Cancer Genome Atlas @




Triple Negative Breast Pathway Markers

Identified from 50 Cell Lines
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Master regulators predict response to drugs. E

PLK1 predicted as a target for basal breast

« DNA damage network is “

upregulated in basal
breast cancers

» Basal breast cancers are
sensitive to PLK inhibitors — swe_ _

GSK-PLKI
" —_ _:_ _:_ SPHINGOMYELIN;S?
§ " ; E l ’/ TBID_0_0
g " — SMPD1
E." o
w o
b 2 5 .
= 2 5 Ng, Goldstein
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« HDAC Network is down-
regulated in basal breast

 Basal/CL breast cancers are
resistant to HDAC inhibitors

-log10 GI50 (M)

cancer cell lines

36 38 40 42 44 46 48

Vorinostat

HDAC inhibitor

-]

Basal

|
Claudin—low

Luminal

Ng, Goldstein
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Predicting the Impact of Mutations '-_-f_ <
On Genetic Pathways “ |

RO/

Inference using Inference usmg‘\..._..-*
Inference using all downstream upstream nelghbors

neighbors neighbors

-~
@ O
\
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RB1 Loss-of-Function (GBM)

Discrepancy Score
PARADIGM downstream
PARADIGM upstream
Expression
Mutation

Sam Ng
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RB1 Network (GBM)




PARADIGM upstream
Expression

NFE2L2 Mutation




Pathway discrepancy gives orthogal view &&=
of the importance of mutations 8

// /
O S Wy e
= «—— TBC1D4 (n=9) (AKT signaling) W, :
2 / NFE2L2 (29) / W
% 8 / MAP2KB (n=5)
o>
—
9
=
=
©
o

GLI2 (n=10) (SHH signaling)—>
CDKN2A (n=30) —
EIFAG1 (n=20) —
- Enables probing into infrequent events

- AR (n=8)

- Can detect non-coding mutation impact (pseudo FPs)

- Can detect presence of pathway compensation for those seemingly
functional mutations (pseudo FPs)

- Extend beyond mutations
. , Sam Ng
- Limited to genes w/ pathway representation
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The Cancér Genome Atlas
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Mutation Association to Pathways

What pathway activities is a mutation’s presence associated?
Can we classify mutations based on these associations?

Mutations
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Mutation Association to Pathways

- Can we classify mutations based on these associations? \ S

Mutations

Ted Goldstein

The Cancer Genome Atlas @
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Mutation Association to Pathways

-  What pathway activities is a mutation’s presence associated?
- Can we classify mutations based on these associations?

Usdye minLs
Click to select node
use arrow keys to navigate tree

¥

Wiew Status

Mutations

BPC_WHT FPathwa
=

NODEID:
NODELOLX
REELATION:
-0.865749

“ PARADIGM Signatures

w




Mutation Association to Pathways

./ |
Can we classify mutations based on these associations? \' """'—"'"‘"
Mutations

D
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Mutation Association to Pathways

Can we classify mutations based on these associations? \ S

lutations
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Mutation Association to Pathways

What pathway activities is a mutation’s presence aSSOC|ated7 \ \'-.........-
Can we classify mutations based on these associations? AR
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Pan-Cancer: Pathway signatures will connect |

molecular subtypes across tissues

Projection of CRC modulated pathways onto o
GBM and OVCA TR

A CRC ___ GBM  OVCA  gumeTEl
Wi r|'.m,1r_mﬁﬁﬁf_;ﬂ|
i e i R

FOXA1T MNetwark

C-MY C Repressed
LKB1 Signaling

P73 Network

i B e TR el G T ~MAP2K10 (interacts with MLK4
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Global Pan-Cancer Map
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Is there a basal disease? - BRCA vs OVCA

0.020

Basal vs Ovarian
|

Luminal B vs Ovarian

b

Luminal A vs Ovarian

|
CL basal vs TCGA basal\’

0.005
|

Sample Pair Frequency

0.000

T | T T T
-1.0 -0.5 0.0 05 1.0

Pearson Correlation

- TCGA ovarian more like basal than luminal breast

Olga Botvinnik
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Summary

activity using multi-modal data.
- Focus first on known biology

- Now going after novel biology (new genes and
interactions)

- Patient stratification into pathway-based subtypes

« Sub-networks are predictive markers and can be used
to simulate scenarios (like drug inhibition)

- Even rare mutations can be assessed for biological
significance.
- Enables multi- and pan-cancer analyses

40 The Cancer Genome Atlas @




Connecting the dots:

A drug for “rare toe carcinoma” (RTCA)

- TCGA cataloging many signatures of tumors: mutation
spectrum, altered genes, and pathway activities
— E.g. patient presents w/ RTCA and has HER2 amplification

- Subtypes, and ultimately single samples can be connected
by these signatures

— RTCA signature checks out w/ PAM50

- We should also engage signatures from external datasets to
inform TCGA data (e.g. Connectivity Map)

— Signature matches lapatinib sensitivity signature

- Provide a basis to bootstrap clinical findings
— Prescribe lapatinib to RTCA patient

41 The Cancer Genome Atlas @




Shout out to the Broad Team

- PARADIGM now included in Firehose
— Public now can access CPU-intensive results

- Special THANKS to Daniel DeCara.

42 The Cancer Genome Atlas @
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