TCGA Workflow for Integrative Molecular Analysis of Cancer

Integration of a TCGA-like Pipeline Into Cancer Clinical Trials Has the Potential to Change Clinical Care

Dissecting Cancer into Molecularly and Clinically Distinct Subgroups by Gene Expression Profiling

Diffuse large B cell lymphoma

~40% of Non-Hodgkin lymphomas

~23,000 new diagnoses/yr

~50% cure rate

~10,000 deaths/yr

Dissecting Cancer into Molecularly and Clinically Distinct Subgroups by Gene Expression Profiling

Dissecting Cancer into Molecularly and Clinically Distinct Subgroups by Gene Expression Profiling

Oncogenic Activation of NF-κB in ABC DLBCL

The B Cell Receptors in ABC DLBCLs Are Clustered and Immobile

Constitutive MYD88 Signaling in ABC DLBCL

Constitutive MYD88 Signaling in ABC DLBCL

Significant Overlap of CD79B/A and MYD88 L265P Mutations in ABC DLBCL

A	BC DLBCL (n=154)		
MYD88 L265P (29%)	3 CD (2	079B/A 23%)	
19%	10%	13%	
CD79B/A	or MYD88 (42%)	3 L265P	

Blockade of BCR Signaling in ABC DLBCL with Ibrutinib

Ibrutinib Covalently Binds to the BTK Active Site

The BTK Inhibitor Ibrutinib is Toxic for ABC DLBCLs With Chronic Active B Cell Receptor Signaling

Clinical Trials of Ibrutinib in Relapsed/refractory DLBCL

Pilot trial (NCI)

- Relapsed/refractory DLBCL (ABC subtype)
- Subtype determined by immunohistochemistry and confirmed by gene expression profiling
- Ibrutinib 560 mg p.o. daily
- n=10 (completed)

Patient #2 on Pilot Trial of Ibrutinib in Relapsed/refractory ABC DLBCL

- 52 year old female ABC DLBCL
- CD79B Y196C mutation MYD88 wild type
- Relapse following 2 prior chemotherapies
 DA-EPOCH-R: Complete response and relapse
 DA-EPOCH-R + Campath: Complete response and relapse
- Single agent treatment with ibrutinib
- Complete response at week 8 by CT and PET scan
- Sustained complete response at > 2 years on ibrutinib

Complete Remission of ABC DLBCL in Patient #2 on Pilot Trial of Ibrutinib

Before Rx

On Rx: week 8

Patient #9 on Pilot Trial of Ibrutinib in Relapsed/refractory ABC DLBCL
59 year old female ABC DLBCL

- CD79B wild type MYD88 wild type
- Primary refractory disease
 R-CHOP x 6: No response
 R-ICE x 2: No response
 Oxaliplatin + gemcitiabine x 3: No response
- Single agent treatment with ibrutinib
- Near complete response at week 3 by CT and PET scan

Rapid Normalization of LDH Following Ibrutinib Treatment

Partial Remission of ABC DLBCL in Patient #3 on Pilot Trial of Ibrutinib

Before Rx

R

On Rx: week 3

Clinical Trials of Ibrutinib in Relapsed/refractory DLBCL

Multicenter phase 2 trial

- Relapsed/refractory DLBCL (ABC and GCB subtypes)
- Subtype determined by immunohistochemistry and confirmed by gene expression profiling
- Ibrutinib 560 mg p.o. daily
- n=70 (accrual complete)

Higher Response Rate to Ibrutinib in ABC DLBCL Than GCB DLBCL

Complete and Partial Responses to Ibrutinib Are Enriched For ABC DLBCLs

Ibrutinib Responses Can Extend Life in Patients With Relapsed/Refractory ABC DLBCL For > 6 Months

Can Analysis of Recurrent Genetic Lesions Identify Ibrutinib Responders Within ABC DLBCL?

CD79B Mutant ABC DLBCL Predicts a High Rate of Response to Ibrutinib

Ibrutinib Response in ABC DLBCL Does Not Require B Cell Receptor Mutation

MYD88 L265P Plus CD79B Mutations Identify Ibrutinib-responsive ABC DLBCL

MYD88 L265P Without CD79B Mutation Predicts Ibrutinib Resistance in ABC DLBCL

CARD11 Mutant ABC DLBCL Does Not Respond To Ibrutinib

Homozygous Deletion of INK4a/ARF is Recurrent in ABC DLBCL and is Associated With Unfavorable Outcome

Homozygous Deletion of the INK4a/ARF Locus Predicts Ibrutinib Response

The Heterogeneity of Human Cancer Necessitates Analysis of Large Numbers of Biopsies

 May need to extend genetic analysis to n > 10,000 to see patterns of co-occurrence and exclusion among genetic lesions.

Integrative Analysis Will Be Key to Deciphering Response / Resistance to Therapy in Cancer

Pathway-centric view of genetic lesions
Gene expression signatures of response / resistance
Pathway activity assessment by protein modifications

Towards Precision Medicine in Routine Cancer Care

Acknowledgements

Metabolism Branch, CCR, NCI

Wyndham Wilson Yandan Yang Sameer Jhavar Roland Schmitz

Frederick National Laboratory, NCI Jason Lih Mickey Williams

Laboratory of Pathology, CCR, NCI Stefania Pittaluga

CIT, NIH Wenming Xiao John Powell

Biometric Research Branch, DCTD, NCI George Wright

Pharmacyclics Jesse McGreivy Lori A. Kunkel Sriram Balasubramanian Mei Cheng Davina Moussa Joseph J. Buggy

Deb Ricci

Ibrutinib DLBCL Trial Consortium

John Gerecitano Andre Goy Sven deVos Vaishalee P. Kenkre Paul Barr Kristie A. Blum Andrei Shustov Ranjana Advani

Ibrutinib induces complete and partial responses in relapsed/refractory ABC DLBCL but the response rate is low in GCB DLBCL

- Ibrutinib induces complete and partial responses in relapsed/refractory ABC DLBCL but the response rate is low in GCB DLBCL
- CD79B mutations enrich for ibrutinib activity in ABC DLBCL but are not required

- Ibrutinib induces complete and partial responses in relapsed/refractory ABC DLBCL but the response rate is low in GCB DLBCL
- CD79B mutations enrich for ibrutinib activity in ABC DLBCL but are not required
- MYD88 L265P mutations cooperate with CD79B mutations to enhance BCR signaling addiction

- Ibrutinib induces complete and partial responses in relapsed/refractory ABC DLBCL but the response rate is low in GCB DLBCL
- CD79B mutations enrich for ibrutinib activity in ABC DLBCL but are not required
- MYD88 L265P mutations cooperate with CD79B mutations to enhance BCR signaling addiction
- ABC DLBCLs with CARD11 mutations or MYD88 L265P without CD79B mutation resist ibrutinib

- Ibrutinib induces complete and partial responses in relapsed/refractory ABC DLBCL but the response rate is low in GCB DLBCL
- CD79B mutations enrich for ibrutinib activity in ABC DLBCL but are not required
- MYD88 L265P mutations cooperate with CD79B mutations to enhance BCR signaling addiction
- ABC DLBCLs with CARD11 mutations or MYD88 L265P without CD79B mutation resist ibrutinib
- INK4a/ARF homozygous deletion is common in R/R ABC DLBCL and associated with ibrutinib response

- Ibrutinib induces complete and partial responses in relapsed/refractory ABC DLBCL but the response rate is low in GCB DLBCL
- CD79B mutations enrich for ibrutinib activity in ABC DLBCL but are not required
- MYD88 L265P mutations cooperate with CD79B mutations to enhance BCR signaling addiction
- ABC DLBCLs with CARD11 mutations or MYD88 L265P without CD79B mutation resist ibrutinib
- INK4a/ARF homozygous deletion is common in R/R ABC DLBCL and associated with ibrutinib response
- Larger ABC DLBCL cohorts are needed to understand the relationship of genetic events to ibrutinib response

- Ibrutinib induces complete and partial responses in relapsed/refractory ABC DLBCL but the response rate is low in GCB DLBCL
- CD79B mutations enrich for ibrutinib activity in ABC DLBCL but are not required
- MYD88 L265P mutations cooperate with CD79B mutations to enhance BCR signaling addiction
- ABC DLBCLs with CARD11 mutations or MYD88 L265P without CD79B mutation resist ibrutinib
- INK4a/ARF homozygous deletion is common in R/R ABC DLBCL and associated with ibrutinib response
- Larger ABC DLBCL cohorts are needed to understand the relationship of genetic events to ibrutinib response
- ABC DLBCL is a good biomarker of ibrutinib response

Ibrutinib Treatment Related Toxicities

- Diarrhea (grade 1)
- Nausea (grade 1)
- Fatigue (grades 1 and 2)
- Time-dependent decrease in B cell numbers Maintenance of serum immunoglobulin levels

Patient #3 on Pilot Trial of Ibrutinib in Relapsed/refractory ABC DLBCL

- 48 year old male ABC DLBCL
- CD79B wild type MYD88 wild type

 Multiple prior relapses following chemotherapy and radiation R-CHOP x 6 R-ESHAP Autologous bone marrow transplant

- Single agent treatment with ibrutinib
- Complete response at week 10 by CT and PET scan

Complete Remission of ABC DLBCL in Patient #3 on Pilot Trial of Ibrutinib

Before Rx

On Rx: week 10

Patient on Phase 2 Trial of Ibrutinib in Relapsed/refractory DLBCL

- 71 year old male ABC DLBCL
- CD79B Y196H mutation MYD88 L265P mutation
- R-CHOP + genasense + radiation: Partial response Ofatumamab + lenalidomide: No response ICE => No response R-DHAP => No response
- Single agent treatment with BTK inhibitor (PCI-32765)
- Complete response at week 12 by CT and PET scan

Complete Remission of ABC DLBCL in Phase 2 Trial of Ibrutinib

5 26

Before Rx

On Rx: week 12

A Gene Expression-based Classifier of ABC vs. GCB DLBCL Using FFPE Biopsies

Molecular Pathogenesis of Diffuse Large B Cell Lymphoma

