Inhibitor-sensitive fibroblast growth factor receptor mutations in lung squamous cell carcinoma

Rachel G. Liao
Laboratory of Matthew Meyerson MD, PhD
TCGA Symposium
November 28, 2012

Squamous cell carcinoma of the lung: a disease without treatment options

- ▲ Adenocarcinoma of the lung has seen many targeted therapy advances in the past decade (EGFR, EML4-ALK, ERBB2), while
- ◆ Squamous cell carcinoma had few targets and no targeted therapies—and the clinical burden is great

ARTICLE

doi:10.1038/nature11404

Comprehensive genomic characterization of squamous cell lung cancers

FGFR events in the TCGA Lung Squamous Cell Carcinoma sequencing project

- → ~10% focal amplification of FGFR1
- ∼8% mutation across the four receptors
 - 3% FGFR2, 3% FGFR3
- Not significantly mutated across the dataset

FGFR2 and FGFR3 mutations are observed in lung SqCC

FGFR2 and FGFR3 mutations do not repeatedly co-occur with other events except TP53 mutation

FGFR2/3 mutations are transforming in an anchorage-independent growth assay

FGFR2/3 transformation can be blocked by FGFR inhibitors

Loss of transformation correlates with loss of phosphorylation

actin

Cells exhibiting dependency on the FGFR pathway are sensitive to FGFR inhibitors

A clinical case

FGFR2 mutation in the coding sequence at p.P253R

An FGFR2-positive tumor regresses upon pazopanib treatment

Conclusions

- FGFR2/3 mutations observed in lung SqCC are sufficient to drive transformation in the NIH-3T3 cell line model, and the transformation phenotype can be reversed by FGFR small molecule inhibition
- Ba/F3 cells dependent on FGFR2/3 signaling for proliferation can be growth inhibited by FGFR small molecule inhibition
- A clinical success confirms that these findings provide a rationale for further study of patients with FGFR events in their tumors
- TCGA data have been used effectively to find new driving, targetable events in tumors (though these events do not always meet the threshold of statistical significance)

Acknowledgements

Matthew Meyerson

Peter Hammerman

Josh Francis

Heidi Greulich

Ami Bhatt

Tzu-Hsiu Chen

Bethany Kaplan

Tanaz Sharifnia

Luc de Waal

Alice Berger

Trevor Pugh

Joonil Jung

All lab members

- Novartis
 - Diana Grauss-Porta
 - Ralph Tiedt

Cory Johannesson

Jesse Boehm

Ben Munoz

Robert Haddad

Matt Wilkerson (UNC)

David Ornitz (WashU)

Pamela Pollock (QIT)

FGFR biology

Table 1 Ligand specificities of FGFR isoforms

FGFR isoform	Ligand specificity
FGFR1b	FGF1, -2, -3 and -10
FGFR1c	FGF1, -2, -4, -5 and -6
FGFR2b	FGF1, -3, -7, -10 and -22
FGFR2c	FGF1, -2, -4, -6, -9, -17 and -18
FGFR3b	FGF1 and -9
FGFR3c	FGF1, -2, -4, -8, -9, -17, -18 and -23
FGFR4	FGF1, -2, -4, -6, -8, -9, -16, -17, -18 and -19

Disulfide bonding observed in ECD mutations to Cys

FGFR2 dimer

FGFR3 dimer

actin

unreduced

