

Virus Analysis in Head and Neck and Bladder Cancers

Michael Parfenov, Ph.D., M.D. Harvard GCC Team

27-28 November, 2012

Viral Infections in Carcinogenesis

- Head and Neck squamous cell carcinomas
- the **sixth most common** cancer worldwide; annual burden of 355,000 deaths and 633,000 incident cases.
- 60–80 % of oropharyngeal cancers, ~20% of oral and laryngeal cancers are caused by *human papillomavirus* (*HPV*).
- HPV-mediated cancers have significantly improved outcomes.

Bladder cancer

- the **second most commonly** occurring **genitourinary cancer** in adults.
- moderate association between HPV and BK polyomavirus infection and tumors.

Detected Viral Genomes

	tumor sa	mples	control samples		
virus	Head&Neck (n=113)	Bladder (n=105)	Head&Neck (n=113)	Bladder (n=105)	
HPV type 16	7 (6.2%)	2 (1.9%)	0	0	
HPV type 33	2 (1.8%)	0	1* (0.8%)	0	
HPV type 90	0	0	1 (0.8%)	0	
HPV type 56	0	1 (1%)	0	0	
HPV type 6	0	1 (1%)	0	0	
Human herpesvirus 1	3 (2.7%)	0	1* (0.8%)	0	
Human herpesvirus 5	1 (0.9%)	2 (1.9%)	0	0	
Human herpesvirus 6A	1 (0.9%)	0	1*(0.9%)	0	
Human herpesvirus 7	1 (0.9%)	0	1 (0.9%)	0	
BK polyomavirus	0	1 (1%)	0	0	

^{*} has a virus positive tumor pair

HPV Positive samples

cancer type	sample	virus	% of covered viral genome	number of <i>HPV</i> copies per cell
Head & Neck	BA-5153-01A	hpv 16		30
	BB-4225-01A	hpv 33		20
	CV-6939-01A	hpv 33		4
	CN-4741-01A	hpv 16	100	26
	CV-5971-01A	hpv 16		5
	BB-4223-01A	hpv 16		19
	CN-5361-01A	hpv 16		4
	BA-5559-01A	hpv 16		1
	BA-4077-01B	hpv 16	82.9	17
	CV-6951-11A	hpv 90	31.5	<1
	CV-6939-11A	hpv 33	13.8	<1
Bladder	FD-A3B4-01A	hpv 56	48.2	<1
	BT-A20T-01A	hpv 16	87.2	<1
	GC-A3I6-01A	hpv 16	100	18
	FD-A3N6-01A	hpv 6	100	5 4

HPV 16 Positive Samples. Genome Visualization

Virus Integration Events

Detection of Integration Events

> HPV integrates in the gene TRPC4AP

Virus Integration Events in the Positive Samples (examples)

sample/ virus	discordant read pairs	gene/ chr region	gene function	related to cancer	CNV
5971-01A <i>hpv16</i>	128	TRPC4AP cell cycle control		~	/
4077-01B <i>hpv16</i>	120	RAD51B	DNA repair by homologous recombination	✓	/
4741-01A	38	KLF5	transcription factor	✓	/
hpv16	7	100kb from <i>TP63</i>	member of the p53 family of transcription factors	~	•
A3I6-01A hpv16	65	BCL2L1	anti/pro-apoptotic regulator	~	~
A3B4-01A <i>hpv56</i>	20	SEC16A NOTCH1	protein transport Notch signaling network	>	'
A3IT-01A <i>BK</i> polyomavirus	29	5kb from <i>FIGN</i>	mitosis regulation	-	-
4726-01A <i>HHV 6A</i>	26	telomeres			

Summary of Integration Events in the *HPV* or *Polyomavirus* positive samples

sample type	# of integration positive samples (%)	# of integration negative samples (%)	
cancer	10 (71.4%)	4 (28.6%)	
control	0 (0%)	2 (100%)	

genes associated with cancergenes without known association with cancer

chimeric episomes

Integration Events Accompanied by Possible Formation of Chimeric Episomes

HPV Integration in TRPC4AP. Sample CV-5971-01A. HPV Genome.

HPV Integration in TRPC4AP. Sample CV-5971-01A. Human Genome.

HPV Integration in TRPC4AP. Sample CV-5971-01A. Human Genome.

Suggested Model of the Integration Event

Where is the chromosome scar?

Suggested Model of the Integration Event

Suggested Model of the Integration Event

Conclusions

- The presence of viral sequences and their cellular status can be detected effectively from low pass whole genome sequencing data.
- 8% of head&neck and 4% of bladder tumors are HPV positive.
- 9 tumors out of 13 HPV positive samples, as well as 1 BK polyomavirus, and 1 HHV 6A tumors have at least one integration event.
- Our results suggest that integration events might directly contribute to carcinogenesis through both viral gene expression and modification of cellular tumor suppressor or oncogenes.
- Based on our data we suggest that in about quarter of all *HPV* integration events the integration was followed by excision of fused host and viral regions that form circular minichromosomes that present in multiple copies within the cancer cells.

Acknowledgments

Harvard GCC team

Raju Kucherlapati

Angela Hadjipanaysis

Netty Sontoso

Angeliki Pantazi

Peter Park

Semin Lee

Lixing Yang

Jon Seidman

Lynda Chin

Alexei Protopopov

John Zhang

Sahil Sheth

Henry Song

