Integrative Genomic Characterization of Lower Grade Gliomas

Daniel J. Brat MD, PhD Emory University School of Medicine

On behalf of the TCGA Lower Grade Gliomas Analysis Working Group

Diffuse Gliomas: 2007 WHO Classification

Astrocytomas
Infiltrating Astrocytoma (WHO grade II)
Anaplastic Astrocytoma (WHO grade III)
Glioblastoma (WHO grade IV)

Oligodendrogliomas
Oligodendroglioma (WHO grade II)
Anaplastic Oligodendroglioma (WHO grade III)

Mixed Oligoastrocytomas
Oligoastrocytoma (WHO grade II)
Anaplastic Oligoastrocytoma (WHO grade III)

Astrocytoma (WHO grade II and III)

IDH, TP53, ATRX mutations

Median Survival: Grade II: 60 mo Grade III: 36 mo

Progress to GBM (Secondary GBM)

Oligodendroglioma (WHO grade II and III)

1p/19q co-deletion IDH, CIC, FUBP1, TERT promoter

Median Survival: Grade II: 120 mo Grade III: 60 mo

Chemosensitive

Oligoastrocytoma

(WHO grade II and III)

Ambiguous Morphology

Brain Tumor Histogenesis

Harvey Cushing Percival Bailey 1926

Distinguishing Among the Gliomas

"There are also many cells which appear to be transitions between gigantic oligodendroglia and astrocytes. It is impossible to classify them as belonging in either group"

Bailey P, Bucy PC. *Oligodendrogliomas of the brain*. J Pathol Bacteriol 1929: 32:735

60-70% concordance among neuropathologists in the diagnosis of diffuse gliomas

Coons SW et al. Cancer. 1997;79:1381

Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician's perspective

Martin J. van den Bent

Tumor type	Standard of care	
Glioblastoma multiforme	Combined chemo-irradiation (60 Gy) with temozolomide	
Grade III tumors	Radiotherapy 60 Gy, value of adjuvant chemotherapy and of combined chemo-irradiation unproven	
Low grade glioma	Radiotherapy 45-55 Gy, higher dosages of RT correlated with more toxicity, unproven role for upfront chemotherapy alone	
Oligodendroglial tumors	Initial management with upfront chemotherapy widely accepted, regardless of tumor grade	

Table 1 Standard of care in gliomas

TCGA Research Network

Comprehensive Analysis of 500 Lower Grade Gliomas

Data type	Platform	Center
Somatic mutations	Whole exome Whole genome	Broad Institute
DNA copy-number	Affymetrix SNP6	Broad Institute
mRNA expression (incl. fusions)	RNA-Seq (Illumina HiSeq)	UNC
DNA methylation	Infinium 450	USC
microRNA expression	miRNA-Seq	BCGCS
Protein levels & phosphorylation	RPPA	MD Anderson
DNA copy-number / rearrangements	Low-pass whole genome sequencing	Harvard

TCGA Lower Grade Gliomas: Data Freeze for Biomarker Manuscript

Data type	Platform	# samples
Exome sequencing	Illumina	290
Whole genome sequencing	Illumina	23
DNA copy number	Affymetrix SNP6	271
DNA copy number	Low pass whole genome	43
mRNA	RNA-Seq	269
DNA methylation	Infinium 450	268
microRNAexpression	miRNA-Seq	295
Protein levels	RPPA	241

293 cases, with overlapping data on 254 for major platforms

MutSigCV Identifies Significantly Mutated Genes and Reveals Mutation Classes

Esther Rheinbay Hailei Zhang Jaegil Kim IDH mutations occur in ~80% of LGGs

- 1) CIC, FUBP1, Notch1, PIK3CA mutations (mostly oligo)
- 2) TP53 and ATRX mutations (mostly astro and oligoastro) IDH wt LGG have mutations similar to GBM

LGG: Copy Number Alterations

NMF Clustering

Hailei Zhang Andrew Cherniack

OncoSign

(Oncogenic Signatures)

Giovanni Ciriello et al., Nat Gen, 2013

OncoSign Identifies 3 Molecular Classes Largely Based on IDH and 1p/19q status

Giovanni Ciriello Jason Huse

DNA Methylation Status

Houtan Noushmehr Peter Laird

mRNA Expression Clustering

1500 most variable genes selected by MAD.

Consensus Heirarchical Clustering (Pearson).

At k=6, 4 large clusters.

Mark Vitucci Ryan Miller

Clustering of molecular data (Copy Number, mRNA, miRNA, methylation) identifies 3-5 subtypes

Andy Cherniak

Houtan Noushmehr

Gordon Robertson

Mark Vitucci

Classes Classes Largely Based on IDH and 1p/19q status

Mia Gifford

Sofie Salama

Three Robust, Non-overlapping LGG Classes

IDHmut-codel	IDHmut-non-codel	IDHwt
IDH mutant	IDH mutant	IDH wt
1p/19q del	1p/19q intact	+7, -10
CIC mut	TP53 mut	EGFR amp
FUBP1 mut	ATRX mut	PTEN mut
TERT mut	8q24 amp	NF1 mut
Notch1 mut		

Clinical Outcomes

IDHwt LGGs have Mutation Frequencies Similar to Glioblastoma

Mia Gifford Olena Morozova Sofie Salama

Fraction of samples with specific alteration in gene

■ SNV/indel ■ Amplification ■ Deletion □ SV ■ Fusion ■ Two or more aberrations

IDHwt LGGs have Oncogenic Gene Fusions Similar to Glioblastoma

Olena Morozova Sofie Salama Roel Verhaak

IDHwt LGGs have Clinical Outcomes Similar to Glioblastoma

Laila Poisson

RPPA: Supervised clustering 189 Antibodies

RPPA: Supervised clustering 14 Tyrosine Kinase Antibodies

Summary

- 6 histopathologic diagnoses can be distilled into 3 robust, clinically relevant molecular classes
- IDH mutant, 1p/19q co-deleted gliomas: CIC, FUBP1, TERT promoter, Notch1 and PIK3CA mutations

IDH mutant, non-codel gliomas: TP53, ATRX, 8q24

IDH wild type LGG have molecular alterations and clinical behavior similar to GBM

Thank You!

TCGA LGG Analysis Working Group

Co-Chairs:

Data Coordinator:

Manuscript Coordinator:

Analysis Coordinators:

DCC Representative:

TCGA Program Office:

Dan Brat, Al Yung

Lee Cooper

Ken Aldape

Roel Verhaak, Sofie Salama

Joan Pontius

Margi Sheth

Kenna Shaw

Jean Claude Zenklusen

Carolyn Hutter