

The ICGC-TCGA DREAM Somatic Mutation Calling Challenge: Preliminary Results

May 12, 2014

Dr. Paul C. Boutros

Principal Investigator, Informatics & Biocomputing Ontario Institute for Cancer Research

General Plan for Data-Analysis

Proteomics, genomics, metabolomics...

Data-Analysis

Results

Different Analysis; Same Conclusions?

In Late 2010... A Failed Validation

Subramanian & Simon, JNCI 2010

But When We Tried to Replicate...

Same dataset, same approach!

The Only Difference: Pre-Processing

Agreement: 151/442 Patients

This holds for all tumour-types: breast cancer

I Have a DREAM

- SAGE Bionetworks/DREAM
- Next contest Genomic Calling Methods
- Collaborative between OICR, TCGA, SAGE

Dr. Adam Margolin, Dr. Josh Stuart

Our Initial Goal: Find the Best WGS Analysis Methods

The focus is solely on accuracy, not speed, computational efficiency or other considerations.

Real Tumour Data

- 10 Tumour/Normal pairs
 - sequenced to $\sim 50x/30x$
 - 5 from pancreatic tumours
 - 5 from prostate tumours

- Raw & processed data available
- All clinical information, protocols, etc. available

But What About Ethics Approval?

 PHI, so ICGC Data Access Coordinating Organization application needed for real data

- We have provided a template to expedite ethics approvals
- We sought and received an opinion on the Challenge from the Western IRB

Simulated Tumour Data

- Start with a genome (cell line or germline)
- "burn in" SNVs & SVs using BAMSurgeon (Adam Ewing, UCSC)
- Take a subset of reads and introduce additional SNVs & SVs to create a tumour/normal pair
- 5 releases, third is active now!
- Increasing complexity, so good for "learning"

How Can You Get The Data?

- Register for the Challenge at Synapse
 - Complete an ICGC DACO Application
- Download using Annai's GeneTorrent
 - No-cost to download

- Directly access in the Google Compute Engine (Google cloud)
 - \$2,000 free computing

Challenge Structure

Challenge 2 Challenge 1 **Simulated Human Tumour Data Tumour Data 2B** • SVs **SNVs SVs SNVs** Balanced Balanced Tumour 1 Tumour 1 Tumour 2 Tumour 2 accuracy accuracy across all 10 across all 10 Tumour 3 Tumour 3 Tumour 4 Tumour 4 T/N pairs T/N pairs Tumour 5 Tumour 5 Challenge 1A Challenge 1B 2B-1 to 2B-5 2A-1 to 2A-5

How will the Challenge be scored?

Challenge 1: tumour data

10 Real Tumour/Normal Pairs

- Several thousand candidates will be validated (up to 10k)
- Validation will include (at least)
 re-sequencing to ~300x
 coverage using AmpliSeq
 primers on an IonTorrent

Challenge 2: in silico data

5 Synthetic Tumour/Normal Pairs

- A complete ground-truth is known for each dataset
- We will calculate sensitivity, specificity and balanced-accuracy for each genome on a held out piece of the genome

DREAM Mutation-Calling Challenge

In silico data:

- .5 T/N pairs
- •For "play" and dry-runs
- •Releases of increasing complexity
- Rapid scoring turn-around
- BAMs (Novoalign or BWA)

Real data:

- \cdot 10 T/N pairs (50x/30x)
- •Two tumour-types:
- .5 pancreatic
- .5 prostate
- •Lane-level FASTQs & BAMs

Initial Results

- So Far:
 - 268 registrants
 - o 439 entries on 3 in silico genomes
- On-going post-challenge submissions as people try to understand the failures of their algorithms (a *living* benchmark!)
- Key discussions on scoring SVs and on improving BamSurgeon (the simulator)

Entries Broadly Reflect a Single ROC Curve

Surprisingly Large Chromosome-Bias

Different Determinants of Errors

Surprisingly Strong Trinucleotide Effects

Coding Regions Had Lower Error Rates

Fraction of Submissions

Clearly Parameterization is Critical

In Summary: Results So Far

- Surprising trends in error-profiles:
 - Chromosomal Bias → trinucleotide bias
 - Normal coverage is "more important"?
- Identification of best methods for mutation prediction
 - SNVs: MuTect (IS1 and IS2)
 - SVs: Delly (IS1), novoBreak (IS2)
- Creation of a community for rapid algorithmdevelopment and benchmarking for cancer NGS
- Improvement of tumour-read simulation

Pilot Surveys

Natalie Fox (grad-student, mRNA)

Dr. Maud Starmans (post-doc, mRNA)

Dr. Amin Zia (post-doc, CNAs)

Dr. Pablo Hennings-Yeomans (post-doc, GRs)

Richard de Borja (Bioinformatician)

Robert Denroche (Bioinformatician)

GenomeCanada

Challenge Organizing Team

Sage/DREAM Organizers

- Gustavo Stolovitzky
- Stephen Friend
- Adam Margolin
- Thea Norman
- Christine Suver
- Christopher Bare
- Kristen Dang
- Bruce Hoff
- Mike Kellen
- Yin Hu

Data Contributors

The Cancer Genome Atlas

External Organizers

- Paul C. Boutros (OICR)
- Josh Stuart (UCSC)
- Lincoln Stein (OICR)
- Kyle Ellrott (UCSC)
- Adam Ewing (UCSC)
- Katie Houlahan (OICR)
- Cristian Caloian (OICR)
- Takafumi Yamaguchi (OICR)
- Andre Masella (OICR)

Funding/Sponsoring/Publication Partners Include:

nature publishing group

Prostate Cancer

DO YOU WANT TO CHANGE THE ANALYSIS TENS OF THOUSANDS OF CANCER GENOMES? CAN YOU SET NEW STANDARDS?

The ICGC-TCGA DREAM Somatic Mutation Calling Challenge

Registration open: NOW!

in silico data available: NOW!

Real data available: NOW!

Deadline #3: May 17!

SMC Challenge Website: https://www.synapse.org/#!Challenges:DREAM