A Pan-Cancer Proteomic Perspective on The Cancer Genome Atlas

Rehan Akbani
Assistant Professor
UT MD Anderson Cancer Center
Analyzed 3,467 samples across 11 tumor types:
- BLCA, BRCA, COAD, READ, GBM, HNSC, KIRC, LUAD, LUSC, OVCA, UCEC

181 proteins
- 128 total proteins
- 1 cleaved
- 1 acetylated
- 51 phosphorylated forms

Data produced in 6 Reverse-Phase Protein Array (RPPA) batches
- Developed Replicates Based Normalization (RBN) method to reduce batch effects
Gene:protein matched (cis) comparisons

mRNA:protein Spearman correlation global mean = 0.3

CNV:protein mean fold change
- Amplifications = 1.05, Deletions = 0.95

Mutation:protein mean fold change
- Elevating mutations = 1.2, Suppressing mutations = 0.9

Other comparisons (all vs. all)

miRNA:protein mean Spearman correlation = ±0.07
Protein:protein mean Spearman correlation = ±0.15
Focus: ERBB2 CNV vs. mRNA vs. protein

<table>
<thead>
<tr>
<th>Disease</th>
<th>CNV ERBB2 (%)</th>
<th>mRNA ERBB2 (%)</th>
<th>Protein HER2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLCA</td>
<td>7</td>
<td>8</td>
<td>22</td>
</tr>
<tr>
<td>BRCA</td>
<td>15</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>CRC</td>
<td>7</td>
<td>3</td>
<td>37</td>
</tr>
<tr>
<td>GBM</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HNSC</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>KIRC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LUAD</td>
<td>4</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>LUSC</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>OVCA</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>UCEC</td>
<td>6</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>
Women’s cancers: OV, UCEC, BRCA (except basal, HER2+)

http://bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA
<table>
<thead>
<tr>
<th>Tumor lineage</th>
<th>BLCA</th>
<th>BRCA-Basal</th>
<th>BRCA-HER2</th>
<th>BRCA-LuminalA/B</th>
<th>BRCA-Reactive</th>
<th>COAD</th>
<th>GBM</th>
<th>HNSC</th>
<th>KIRC</th>
<th>LUAD</th>
<th>LUSC</th>
<th>OVCA</th>
<th>READ</th>
<th>UCEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>A2</td>
<td>R</td>
<td>C</td>
<td>D</td>
<td>F</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLCA</td>
<td>1</td>
<td>0</td>
<td>18</td>
<td>0</td>
<td>30</td>
<td>44</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRCA-Basal</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>52</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRCA-HER2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>53</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRCA-LuminalA/B</td>
<td>2</td>
<td>344</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRCA-Reactive</td>
<td>144</td>
<td>31</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COAD</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>314</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBM</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>207</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNSC</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>210</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIRC</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td>427</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUAD</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>233</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUSC</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>188</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVCA</td>
<td>9</td>
<td>0</td>
<td>5</td>
<td>368</td>
<td>0</td>
<td>1</td>
<td>28</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>READ</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>120</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCEC</td>
<td>0</td>
<td>0</td>
<td>324</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Some outcome differences

BRCA reactive group markers: Caveolin, Collagen, MHY11, Rictor

Endo-like BLCA Squamous-like KIRC BRCA
Women’s cancers: ER-alpha, AR
Luminal breast: AR, BCL2, FASN, ACC1, and pACC
OV: CMYC (new MYC therapies under development)
All except women’s cancers and bladder: pSRC
HNSC: pSRC, a downstream target of EGFR (sensitive to EGFR therapy?)
UCEC, BLCA, BRCA, COAD/READ: HER2
KIRC: HER3
GBM: pEGFR with NOTCH1 and HER3 activation (combination therapy?)
Unsupervised clustering shows 7 clusters

http://bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA

Next Gen Clustered Heat Maps (NG-CHM)
• Tumors cross clusters
• Sanity check: Her2 amplified cases cluster together
Reactive cluster (V)
Some outcome differences – Reactives

Reactive group

BRCA

COAD

KIRC

LUSC

OVCA

BLCA
Some outcome differences – AKT pathway

Cluster VII - AKT pathway suppressed

Cluster IV - AKT pathway activated
Take-home findings

Cross platform comparisons
- Mutations have greater mean fold changes than CNV
- mRNA:protein correlations can vary widely by disease
- HER2 protein levels not predicted well by CNV or mRNA in certain diseases (e.g. CRC, LUAD, BLCA)

Several novel markers identified

Outcome differences seen across clusters, possibly driven by pathway differences

Pathways effects are not equal by disease
- Certain pathway activations may have good or bad prognosis depending on disease

Protein:protein correlations vary by disease

Poster #1

MD Anderson
Gordon B. Mills
Patrick Kwok Shing Ng
Henrica M.J. Werner
Maria Shahmoradgoli
Fan Zhang
Zhenlin Ju
Wenbin Liu
Ji-Yeon Yang
Kosuke Yoshihara
Jun Li
Shiyun Ling

Elena G. Seviour
Prahlad T. Ram
Lixia Diao
Pan Tong
John V. Heymach
Lauren A. Byers
Funda Meric-Bernstam
Bradley M. Broom
Roeland G.W. Verhaak
Han Liang
Yiling Lu
John N. Weinstein

The Netherlands Cancer Institute
Steven M. Hill
Frank Dondelinger
Nicolas Städler
Sach Mukherjee

UT Southwestern Medical Center
John D. Minna