A Pan-Cancer Proteomic Perspective on The Cancer Genome Atlas

Rehan Akbani

Making Cancer History*

Assistant Professor UT MD Anderson Cancer Center

Overview

Analyzed 3,467 samples across 11 tumor types:

BLCA, BRCA, COAD, READ, GBM, HNSC, KIRC, LUAD, LUSC, OVCA, UCEC

181 proteins

- 128 total proteins
- 1 cleaved
- 1 acetylated
- 51 phosphorylated forms
- Data produced in 6 Reverse-Phase Protein Array (RPPA) batches
 - Developed Replicates Based Normalization (RBN) method to reduce batch effects

Protein vs. other platforms

- Gene:protein matched (*cis*) comparisons
 - mRNA:protein Spearman correlation global mean = 0.3

Disease	BLCA	BRCA	COAD	GBM	HNSC	KIRC	LUAD	LUSC	OVCA	READ	UCEC
Corr	0.26	0.27	0.16	0.25	0.23	0.19	0.24	0.24	0.33	0.18	0.24

- CNV:protein mean fold change
 - Amplifications = 1.05, Deletions = 0.95
- Mutation:protein mean fold change
 - Elevating mutations = 1.2, Suppressing mutations = 0.9
- Other comparisons (all vs. all)
 - miRNA:protein mean Spearman correlation = ±0.07
 - Protein:protein mean Spearman correlation = ±0.15

Focus: ERBB2 CNV vs. mRNA vs. protein

Disease	CNV ERBB2 (%)	mRNA ERBB2 (%)	Protein HER2 (%)
BLCA	7	8	22
BRCA	15	11	15
CRC	7	3	37
GBM	0	0	1
HNSC	2	1	2
KIRC	0	0	0
LUAD	4	2	18
LUSC	3	1	3
OVCA	4	2	2
UCEC	6	4	9

Unsupervised clustering shows 8 clusters

Women's cancers: OV, UCEC, BRCA (except basal, HER2+)

http://bioinformatics.mdanderson.org/main /TCGA/Pancan11/RPPA

Tumor lineage	e Cluster
Basal	A1
BLCA	A2
BRCA	B
COAD	C
GBM	D
HNSC	E
KIRC	F
LUAD	G
LUSC	н
OVCA	
READ	
UCEC	

Next Gen Clustered Heat Maps (NG-CHM)

Some outcome differences

BRCA reactive group markers: Caveolin, Collagen, MHY11, Rictor

Marker proteins (potential targets)

- Women's cancers: <u>ER-alpha, AR</u>
- Luminal breast: <u>AR, BCL2, FASN</u>, <u>ACC1</u>, and <u>pACC</u>
- OV: <u>CMYC</u> (new MYC therapies under development)
- All except women's cancers and bladder: <u>pSRC</u>
- HNSC: <u>pSRC</u>, a downstream target of EGFR (sensitive to EGFR therapy?)
- UCEC, BLCA, BRCA, COAD/READ:
 <u>HER2</u>
- KIRC: <u>HER3</u>
- GBM: <u>pEGFR</u> with <u>NOTCH1</u> and <u>HER3</u> activation (combination therapy?)

Adjustment for tissue effects

Unsupervised clustering shows 7 clusters

http://bioinformatics.mdanderson.org/main /TCGA/Pancan11/RPPA

Next Gen Clustered Heat Maps (NG-CHM)

- Tumors cross clusters
- Sanity check: Her2 amplified cases cluster together

			 \frown	\frown	 \frown				
	1	lla	IIb	III	IV	v	VI	VII	
BLCA	1	3	0	23	28	33	19	20	Γ
BRCA-Basal	1	1	1	20	42	22	11	30	
BRCA-HER2	0	40	0	1	15	0	0	5	
BRCA-LuminalA/B	2	16	0	105	84	24	15	119	E
BRCA-Reactive	0	1	0	0	11	147	6	28	
COAD	58	0	0	31	56	78	63	48	Г
GBM	0	0	61	22	78	7	23	24	
HNSC	0	0	6	24	61	38	49	34	Γ
KIRC	0	0	1	77	136	107	53	80	
LUAD	0	3	5	41	71	33	37	47	Г
LUSC	0	0	2	31	65	30	32	35	
OVCA	0	3	0	80	106	86	34	103	Г
READ	25	1	0	19	17	28	29	11	
UCEC	0	4	0	41	151	81	38	89	

PEA1:5 HEB2 + EB2 FR Wht signating the signation way low

Reactive cluster (V)

Some outcome differences – Reactives

Reactive group

Some outcome differences – AKT pathway

Cluster VII - AKT pathway suppressed

Cluster IV - AKT pathway activated

Take-home findings

Cross platform comparisons

- Mutations have greater mean fold changes than CNV
- mRNA:protein correlations can vary widely by disease
- HER2 protein levels not predicted well by CNV or mRNA in certain diseases (e.g. CRC, LUAD, BLCA)
- Several novel markers identified
- Outcome differences seen across clusters, possibly driven by pathway differences
- Pathways effects are not equal by disease
 - Certain pathway activations may have good or bad prognosis depending on disease
 - Protein:protein correlations vary by disease

Acknowledgments and publication

Akbani, R. et al. A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nature Communications, *In Press*. Poster #1

MD Anderson

Gordon B. Mills Patrick Kwok Shing Ng Henrica M.J. Werner Maria Shahmoradgoli Fan Zhang Zhenlin Ju Wenbin Liu Ji-Yeon Yang Kosuke Yoshihara Jun Li Shiyun Ling Flena G. Seviour Prahlad T. Ram Lixia Diao Pan Tong John V. Heymach Lauren A. Byers Funda Meric-Bernstam Bradley M. Broom Roeland G.W. Verhaak Han Liang Yiling Lu John N. Weinstein

The Netherlands Cancer Institute

Steven M. Hill Frank Dondelinger Nicolas Städler Sach Mukherjee

UT Southwestern Medical Center John D. Minna

