

Melanomas Resist Therapy Through Dedifferentiation

Epigenetic Signatures in Human Cancers

Loss of 5-Hydroxymethylcytosine Is an Epigenetic Hallmark of Melanoma

Christine Guo Lian, ^{1,2,13} Yufei Xu, ^{1,13} Craig Ceol, ^{3,6} Feizhen Wu, ⁹ Allison Larson, ⁵ Karen Dresser, ⁷ Wenqi Xu, ⁹ Li Tan, ⁹ Yeguang Hu, ¹ Qian Zhan, ² Chung-wei Lee, ² Di Hu, ¹ Bill Q. Lian, ^{1,8} Sonja Kleffel, ⁵ Yijun Yang, ¹⁰ James Neiswender, ⁶ Abraham J. Khorasani, ¹ Rui Fang, ¹ Cecilia Lezcano, ² Lyn M. Duncan, ⁶ Richard A. Scolyer, ¹¹ John F. Thompson, ¹¹ Hojabr Kakavand, ¹¹ Yariv Houvras, ^{3,12} Leonard I. Zon, ³ Martin C. Mihm Jr., ⁵ Ursula B. Kaiser, ¹ Tobias Schatton, ⁵ Bruce A. Woda, ⁷ George F. Murphy, ^{2,*} and Yujiang G. Shi^{1,9,*}

Epigenomic Enhancer Profiling Defines a Signature of Colon Cancer Batool Akhtar-Zaidi et al. Science 336, 736 (2012); DOI: 10.1126/science.1217277

A Blueprint for an International Cancer Epigenome Consortium.

A Report from the AACR Cancer Epigenome Task Force

Stephan Beck¹, Bradley E. Bernstein², Robert M. Campbell⁴, Joseph F. Costello⁵, Dashyant Dhanak⁹, Joseph R. Ecker⁵, John M. Greally¹¹, Jean-Pierre Issa¹⁰, Peter W. Laird⁷, Kornelia Polyak³, Benjamin Tycko¹², and Peter A. Jones⁸, for the AACR Cancer Epigenome Task Force

How Does Epigenome Contribute to Melanoma Progress

Chromatin State = Combinatorial Patterns of Epigenetic Modifications

Cell System to Identify Epigenetic Changes

HMEL-BRAF Primary Human Melanocytes Immortalized with PMEL-BRAF TERT& Expressing p53DD, CDK4^{R24C}, BRAF^{V600E}

Non/less Tumorigenic	Tumorigenic but not metastatic	Metastatic
NT	Т	М
HMEL-BRAF-shGFP (H)	HMEL-BRAF-shPTEN (Hmp)	HMEL-BRAF-shPTEN-cMET (Hmp-M)
PMEL-BRAF-shGFP (PB)	PMEL-BRAF-shPTEN (PBmp)	PMEL-BRAF-shPTEN-cMET (PBmp-M)

High-Throughput ChIP-Sequencing to Profile Chromatin Marks

H2AK5ac	H3K4me1	H3
		•
H2BK5ac	H3K4me2	H4
H2BK15ac	H3K4me3	IgG
H2BK120ac	H3K9me1	
H3K4ac	H3K9me3	
H3K9ac	H3K27me1	
H3K14ac	H3K27me3	
H3K18ac	H3K36me1	
H3K23ac	H3K36me2	
H3K27ac	H3K36me3	
H3K36ac	H3K79me1	
H4K12ac	H3K79me2	
H4K16ac	H3K79me3	
H4K5ac	H4K20me1	
H4K8ac	H4K20me2	
H4K91ac	H4K20me3	
H4TETRAac		

Loss of Histone Acetylations at Observed in Pro-tumorgenic Melanocytes

# Term Name	Binom FDR Q-Val
Apoptosis signaling pathway	1.63E-50
Integrin signalling pathway	5.48E-47
DNA replication	7.54E-29
Toll receptor signaling pathway	8.95E-16
Cell cycle	9.06E-11

De-acetylated Enhancers Contains Putative Tumor-suppressors Motifs

Pre-existing chromatin landscape could determine tumor suppressor-based regulations

Characterizing Evolution of the Epigenome During Human Melanoma Development

Changes in chromatin states

10 melanoma tumor samples (from primary and metastatic lesions) that have been comprehensively profiled by TCGA.

Epigenome Profiling of Genomically Characterized Human Melanoma Tumors

36 histone marks, 2 forms of RNA Polymerase and 3 histone variants and CTCF (so far total of 6 billion reads)

Cancers Show Retrograde Remodeling of Their Regulatory Landscape

New "oncogenic" sites that are actually older developmental pathways

Characterizing Evolution of the Epigenome During Human Melanoma Development

Search:	GO

DME PARTICIPANTS

BROWSE DATA

PROTOCOLS

COMPLETE EPIGENOMES

TOOLS

PUBLICATIONS

Epigenomic profiles of 127 different human-body cell types

Potential Reorganization in the Regulatory Landscape During Melanoma Formation

H3K4me1 site evolution

DNAsel hypersensitivity at tumor H3K4me1 sites

Determining the Functionality of Non-coding Variants with Epigenome Integration

Melanoma GWAS Site Loses Active Histone Marks in Pro-tumorgenic Melanocytes

Melanoma GWAS Site Loses Active Histone Marks In Human Melanoma

Summary

Comprehensive epigenomic characterization in primary melanocyte-based melanoma progression model revealed:

- Loss of histone acetylation around genes involved in carcinogenesis.
- De-acetylated enhancers could hinder binding of key transcription factors to DNA.

Preliminary epigenome profiling human melanoma tumors suggests epigenomic re-orientation during melanomagenesis.

Epigenomic profiles are useful to annotate non-coding variants in cancer.

Acknowledgements

Lynda Chin, MD

Kunal Rai Emily Keung

Giannicola Genovese
Tony Gutschner
Lawrence Kwong
Yonathan Lissanu
John Miller
Sharmistha Sarkar
Koichi Takahashi
Peiling Tsou
Ian Watson

Genomic Medicine Computational Group, MDACC

Samir Amin
Terrence Wu
Per Wu
Christopher Bristow
Verhaak Lab
Jannik Andersen

UCLA

Weizmann Institute Poznan University

Jason Ernst Petko Fiziev

Ido Amit

Maciej Wiznerowicz

Broad Institute

Aviv Regev

...And the rest of the TCGA Community

Identification of Melanoma Super-enhancers

