Melanomas Resist Therapy Through Dedifferentiation ### Epigenetic Signatures in Human Cancers ### Loss of 5-Hydroxymethylcytosine Is an Epigenetic Hallmark of Melanoma Christine Guo Lian, ^{1,2,13} Yufei Xu, ^{1,13} Craig Ceol, ^{3,6} Feizhen Wu, ⁹ Allison Larson, ⁵ Karen Dresser, ⁷ Wenqi Xu, ⁹ Li Tan, ⁹ Yeguang Hu, ¹ Qian Zhan, ² Chung-wei Lee, ² Di Hu, ¹ Bill Q. Lian, ^{1,8} Sonja Kleffel, ⁵ Yijun Yang, ¹⁰ James Neiswender, ⁶ Abraham J. Khorasani, ¹ Rui Fang, ¹ Cecilia Lezcano, ² Lyn M. Duncan, ⁶ Richard A. Scolyer, ¹¹ John F. Thompson, ¹¹ Hojabr Kakavand, ¹¹ Yariv Houvras, ^{3,12} Leonard I. Zon, ³ Martin C. Mihm Jr., ⁵ Ursula B. Kaiser, ¹ Tobias Schatton, ⁵ Bruce A. Woda, ⁷ George F. Murphy, ^{2,*} and Yujiang G. Shi^{1,9,*} Epigenomic Enhancer Profiling Defines a Signature of Colon Cancer Batool Akhtar-Zaidi et al. Science 336, 736 (2012); DOI: 10.1126/science.1217277 A Blueprint for an International Cancer Epigenome Consortium. A Report from the AACR Cancer Epigenome Task Force Stephan Beck¹, Bradley E. Bernstein², Robert M. Campbell⁴, Joseph F. Costello⁵, Dashyant Dhanak⁹, Joseph R. Ecker⁵, John M. Greally¹¹, Jean-Pierre Issa¹⁰, Peter W. Laird⁷, Kornelia Polyak³, Benjamin Tycko¹², and Peter A. Jones⁸, for the AACR Cancer Epigenome Task Force ### How Does Epigenome Contribute to Melanoma Progress Chromatin State = Combinatorial Patterns of Epigenetic Modifications ### **Cell System to Identify Epigenetic Changes** HMEL-BRAF Primary Human Melanocytes Immortalized with PMEL-BRAF TERT& Expressing p53DD, CDK4^{R24C}, BRAF^{V600E} | Non/less Tumorigenic | Tumorigenic but not metastatic | Metastatic | |----------------------|--------------------------------|--------------------------------| | NT | Т | М | | HMEL-BRAF-shGFP (H) | HMEL-BRAF-shPTEN (Hmp) | HMEL-BRAF-shPTEN-cMET (Hmp-M) | | PMEL-BRAF-shGFP (PB) | PMEL-BRAF-shPTEN (PBmp) | PMEL-BRAF-shPTEN-cMET (PBmp-M) | ## High-Throughput ChIP-Sequencing to Profile Chromatin Marks | H2AK5ac | H3K4me1 | H3 | |-----------|----------|-----| | | | • | | H2BK5ac | H3K4me2 | H4 | | H2BK15ac | H3K4me3 | IgG | | H2BK120ac | H3K9me1 | | | H3K4ac | H3K9me3 | | | H3K9ac | H3K27me1 | | | H3K14ac | H3K27me3 | | | H3K18ac | H3K36me1 | | | H3K23ac | H3K36me2 | | | H3K27ac | H3K36me3 | | | H3K36ac | H3K79me1 | | | H4K12ac | H3K79me2 | | | H4K16ac | H3K79me3 | | | H4K5ac | H4K20me1 | | | H4K8ac | H4K20me2 | | | H4K91ac | H4K20me3 | | | H4TETRAac | | | # Loss of Histone Acetylations at Observed in Pro-tumorgenic Melanocytes | # Term Name | Binom FDR Q-Val | |---------------------------------|-----------------| | Apoptosis signaling pathway | 1.63E-50 | | Integrin signalling pathway | 5.48E-47 | | DNA replication | 7.54E-29 | | Toll receptor signaling pathway | 8.95E-16 | | Cell cycle | 9.06E-11 | ### De-acetylated Enhancers Contains Putative Tumor-suppressors Motifs Pre-existing chromatin landscape could determine tumor suppressor-based regulations # Characterizing Evolution of the Epigenome During Human Melanoma Development Changes in chromatin states 10 melanoma tumor samples (from primary and metastatic lesions) that have been comprehensively profiled by TCGA. # **Epigenome Profiling of Genomically Characterized Human Melanoma Tumors** 36 histone marks, 2 forms of RNA Polymerase and 3 histone variants and CTCF (so far total of 6 billion reads) # Cancers Show Retrograde Remodeling of Their Regulatory Landscape New "oncogenic" sites that are actually older developmental pathways # Characterizing Evolution of the Epigenome During Human Melanoma Development | Search: | GO | |---------|----| | | | DME PARTICIPANTS BROWSE DATA PROTOCOLS COMPLETE EPIGENOMES TOOLS **PUBLICATIONS** Epigenomic profiles of 127 different human-body cell types ### Potential Reorganization in the Regulatory Landscape During Melanoma Formation #### H3K4me1 site evolution #### DNAsel hypersensitivity at tumor H3K4me1 sites # Determining the Functionality of Non-coding Variants with Epigenome Integration # Melanoma GWAS Site Loses Active Histone Marks in Pro-tumorgenic Melanocytes ## Melanoma GWAS Site Loses Active Histone Marks In Human Melanoma ### **Summary** Comprehensive epigenomic characterization in primary melanocyte-based melanoma progression model revealed: - Loss of histone acetylation around genes involved in carcinogenesis. - De-acetylated enhancers could hinder binding of key transcription factors to DNA. Preliminary epigenome profiling human melanoma tumors suggests epigenomic re-orientation during melanomagenesis. Epigenomic profiles are useful to annotate non-coding variants in cancer. ### Acknowledgements Lynda Chin, MD Kunal Rai Emily Keung Giannicola Genovese Tony Gutschner Lawrence Kwong Yonathan Lissanu John Miller Sharmistha Sarkar Koichi Takahashi Peiling Tsou Ian Watson ### **Genomic Medicine Computational Group, MDACC** Samir Amin Terrence Wu Per Wu Christopher Bristow Verhaak Lab Jannik Andersen ### **UCLA** Weizmann Institute Poznan University Jason Ernst Petko Fiziev **Ido Amit** Maciej Wiznerowicz ### **Broad Institute** Aviv Regev ...And the rest of the TCGA Community ### Identification of Melanoma Super-enhancers