Cancer-specific Splicing and Splicing QTLs Revealed By Pan-Cancer Genome Analysis

Kjong-Van Lehmann

Rätsch Lab, New York City, USA

TCGA Symposium, May 13, 2014

Splicing and Drug sensitivity

S. Bonnal et al. (2012); Nature Reviews Drug Discovery

Analysis Across Multiple Cancer Types

Goals

- Identify cancer-specific splicing patterns
- ② Identify variants regulating splicing in same gene (cis)
- 3 Identify variants regulating splicing in other <u>cancer</u> genes (trans)

TCGA provides RNA-seq and matching exome data

- RNA-seq → Find & quantify splicing events
- ullet Exome \leadsto Identify variants in exons & flanking intronic regions

Problem: Non-uniform processing (alignments & variant calling)

Analysis Across Multiple Cancer Types

Goals

- Identify cancer-specific splicing patterns
- 2 Identify variants regulating splicing in same gene (cis)
- 3 Identify variants regulating splicing in other <u>cancer</u> genes (trans)

TCGA provides RNA-seq and matching exome data

- RNA-seq → Find & quantify splicing events
- Exome

 Identify variants in exons & flanking intronic regions

Problem: Non-uniform processing (alignments & variant calling)

Analysis Across Multiple Cancer Types

Goals

- Identify cancer-specific splicing patterns
- 2 Identify variants regulating splicing in same gene (cis)
- 3 Identify variants regulating splicing in other <u>cancer</u> genes (trans)

TCGA provides RNA-seq and matching exome data

- RNA-seq → Find & quantify splicing events
- Exome

 Identify variants in exons & flanking intronic regions

Problem: Non-uniform processing (alignments & variant calling)

Re-analysis of Raw Sequencing Data

Computing at cluster colocated with CGHub

Scale: 9,000 exome & 4,500 RNA-seq libraries → 400 TB data

- \Rightarrow Re-mapping (STAR): \approx 6 CPU years
- \Rightarrow Variant Calling (GATK U.G. & MuTect): \approx 12 CPU years
- \Rightarrow Splice variant quantification (SplAdder): \approx 0.5 CPU years

- Build and extend splice-graph using re-aligned reads
- Spliced reads support either Isoform 1 or Isoform 2
- Count reads supporting alternate event

Detecting Alternative Splice Events with SplAdder

- Build and extend splice-graph using re-aligned reads
- Spliced reads support either Isoform 1 or Isoform 2
- Count reads supporting alternate event

Detecting Alternative Splice Events with SplAdder

- Build and extend splice-graph using re-aligned reads
- Spliced reads support either Isoform 1 or Isoform 2
- Count reads supporting alternate event

Detecting Alternative Splice Events with SplAdder

- Build and extend splice-graph using re-aligned reads
- Spliced reads support either Isoform 1 or Isoform 2
- Count reads supporting alternate event

Splicing Variation Across Cancer Types

Detection of Cancer-Specific Splicing

• Detected new splicing events that occur frequently in specific

Detection of Cancer-Specific Splicing

- Detected new splicing events that occur frequently in specific cancer types
- Needs independent confirmation
- Potential targets for treatment

QTL Analyses in Comparison

Challenges in Cancer Genomics

- Opportunity: Understand tissue- & cancer specificity of splicing
- Opportunity: Large sample size allows to find trans-associations
- Problem: Heterogeneity and purity of sample
- **Problem:** Germline vs. Somatic mutations, many rare variants

QTL Analyses in Comparison

Challenges in Cancer Genomics

- Opportunity: Understand tissue- & cancer specificity of splicing
- Opportunity: Large sample size allows to find *trans*-associations
- Problem: Heterogeneity and purity of sample
- **Problem:** Germline *vs.* Somatic mutations, many rare variants

- $\mathbf{Y} = X\beta + \text{Pop. Structure} + \text{Cancer Structure} + \epsilon$
- Pop. Structure $\sim N(0, \sigma_p^2 P)$ with $P = X_{\text{germ}} X_{\text{germ}}^T$
- Cancer Structure $\sim N(0, \sigma_c^2 C)$ with $C = X_{\text{soma}} X_{\text{som}}^T$

- $Y = X\beta$ + Pop. Structure + Cancer Structure + ϵ
- Pop. Structure $\sim N(0, \sigma_p^2 P)$ with $P = X_{\text{germ}} X_{\text{germ}}^T$
- Cancer Structure $\sim N(0, \sigma_c^2 C)$ with $C = X_{\text{soma}} X_{\text{soma}}^T$

- $Y = X\beta + \text{Pop. Structure} + \text{Cancer Structure} + \epsilon$
- \bullet Pop. Structure $\sim \textit{N}(0,\sigma_{\textit{p}}^2P)$ with $P=\textit{X}_{\text{germ}}\textit{X}_{\text{germ}}^T$
- Cancer Structure $\sim N(0, \sigma_c^2 C)$ with $C = X_{\text{soma}} X_{\text{soma}}^T$

- AFRICAN AMERICAN MISSING
- NATIVE HAWAIIAN
 - WHITE

- $Y = X\beta + \text{Pop. Structure} + \text{Cancer Structure} + \epsilon$
- \bullet Pop. Structure $\sim \textit{N}(0,\sigma_{\textit{p}}^2P)$ with $P=\textit{X}_{\text{germ}}\textit{X}_{\text{germ}}^T$
- Cancer Structure $\sim N(0, \sigma_c^2 C)$ with $C = X_{\text{soma}} X_{\text{soma}}^T$

Example: cis-Associations in SNRP-C

TRPT1 - tRNA Phosphotransferase I

cis-Associations across Multiple Cancer Types

cis-Associations in 45 genes at 5% FDR (in 900 considered genes)

Replicated in multiple cancer types:

Splicing trans-Associations (FDR 5%)

Splicing trans-Associations (FDR 5%)

Splicing trans-Associations (FDR 5%)

- Developed resource of novel & known alternative splice events
- Identified cancer-specific isoforms that appear rarely expressed in normal samples
- Performed common variant association study to map splicing phenotypes
- Sample size in TCGA data enables detection of trans associations
- All of these associations still need validation (in particular trans)

Acknowledgements

- André Kahles
- Cyriac Kandoth
- William Lee
- Cancer Genome Atlas Network
- Nikolaus Schultz
- Robert Klein
- Oliver Stegle
- Gunnar Rätsch

Funded by MSKCC.