

Expertise that advances patient care through education, innovation, and advocacy.

www.amp.org

NATIONAL REFERENCE LABORATORY

Department of Pathology

ACCE and Genomic Testing

Elaine Lyon, PhD Medical Director, Molecular Genetics, Co-Medical Director, Pharmacogenetics Associate Professor of Pathology University of Utah School of Medicine President, Association for Molecular Pathology

Scope

- Focus on molecular assays, attempting to fit models/definitions developed for clinical chemistry
- Disclaimer: My own opinions, considering BCBSA policy, but also looking towards the future

ACCE Framework

- <u>Analytical validity:</u>
- <u>C</u>linical Validity
- <u>C</u>linical Utility
- <u>E</u>thical, legal, social implications
- Purposes for tests
- Framework Comparisons CDC's ACCE Fryback-Thornbury USPSTF's framework USPSTF's framework framework framework for screening topics for counseling Domain 4 interventions Societal efficacy Reduced Reduced Patient outcome morbidity and/or morbidity and/or mortality mortality Domain 3 Clinical Therapeutic utility Intermediate Intermediate efficacy outcome outcome Adverse effects of Diagnostic treatment hinking efficacy Behavioral/ Treatn counseling interventions legal, Clinical Early detection of Intervention Domain 2 validity Diagnostic target condition condition(s accuracy efficacy Adverse effects of screening/assessment Domain 1 Analytical Technical efficacy Screehing Assessmeht validity Persons at risk Clinical population
- Reduce morbidity/mortality
 - Provide information to manage patient/family members
 - Assist with reproductive decision-making

Fryback GDG, Thornbury JR. The efficacy of diagnostic imaging. Med Decis Making 1991 11: 88 Matchar Chapter 1. Introduction to methods guide for medical test reviews. JGenIntmed 2012

BioMarkers vs Mutations

- Molecular Biomarkers (associated, relative risks)
 - Clinical trials to establish association
 - More likely to be proprietary
 - GWAS studies
 - Expression patterns
- Pathogenic variants (causative)
 - Mendelian disorders (germline)
 - Oncology (somatic variants)
 - Driver mutations, therapy drug susceptibility, resistance variants

Analytical Validity

- Does the assay detect what is claimed that it detects?
 - Accuracy/ precision studies
 - Determines analytical sensitivity and specificity
 - Region interrogated defined
 - Targeted mutations
 - Gene sequencing
 - Targeted exons, Full gene sequencing (all exons, intron/exon boundaries, some known deep intronic or regulatory mutations
 - Deletion/duplication analysis
 - Performance affected by
 - Interfering substances (well known)
 - Rare, unknown variants at primer/probe sites, creating 2° structure
 - Mosaicism, low mutation levels, limits of detection
 - Continuing evaluation: proficiency testing/alternative

Clinical Validity

- Does the test correctly identify affected/unaffected individuals?
 - Does Analyte (gene) or Assay determine clinical validity?
 - Do mutations in a gene cause disease?
 - Linkage studies, functional analysis, case/control, cloned from known protein sequence
 - Depends on the region interrogated /defined phenotype
 - Clinical sensitivities (F8 example)
 - Not necessarily method dependent
 - PPV/NPV a measure of analytic or clinical validity or clinical utility?
 - How is it defined for single gene disorders?
 - Penetrance, mild vs severe mutations?
 - Dependent on population, indication for testing

Clinical Validity - Complications

- Inherited disease concepts
 - Penetrance/expressivity
 - Pleiotropy single gene influences multiple traits
 - Clinical Overlap: pathogenic variants in multiple genes cause similar phenotypes
 - Phenocopy –phenotype overlap due to environment that resembles the effect of inherited pathogenic variants
 - Carefully define "phenotype", (BRCA Example)
 - Polygenic traits: multiple genes contribute to the phenotype
 - Same test for diagnostic, predictive, carrier testing
 - Interrogating regions (deep intronic, regulatory) of a gene or genes not well understood will produce more Variants of Uncertain Significance (VUS)
 - All genes on a panel to have established clinical validity
 - ClinGen project funded by NIH to examine disease categories

Modified ACCE (Fryback-Thornbury) for Clinical Utility

- Diagnostic Thinking Efficacy (Diagnosis):
 - Rule out disease (differential diagnosis)
 - Stop diagnostic odyssey: prevent additional testing
 - Appropriate follow-up/monitoring
- Therapeutic efficacy
 - Drug response
- Patient outcome efficacy
 - Patient management: improve outcomes
 - Prognostic: Determine aggressiveness of disease/treatment
 - Predictive: pre-symptomatic, familial mutations, reproductive
- Societal efficacy:
 - Proper use of medical/community resources

Reasons to Show Utility

- Aid clinicians in ordering, interpreting
- Demonstrate value of genomic medicine
- Reimbursement

Definition of Clinical Utility

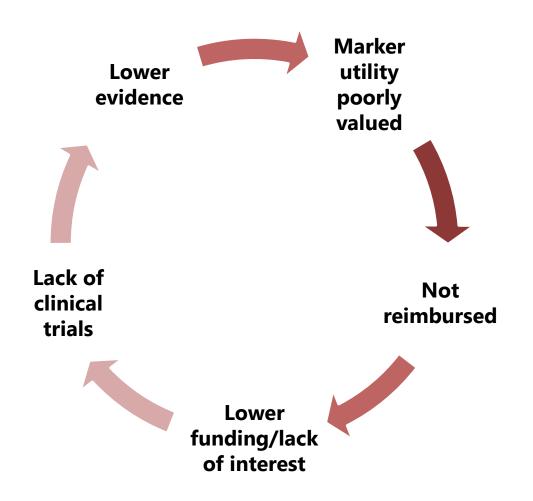
- Utility for patient, clinician, payers, regulators, society
- Definition of Clinical Utility
 - Narrow: Determine drug and dose improved outcomes demonstrated
 - For clinician/patient: diagnosis, treatment, management
 - Inherent utility of diagnostic testing
 - For patient/family: predictive testing, reproductive planning, long term care planning
 - For Payers: treatment, improved outcomes
 - For Regulators: analytical and clinical validity, expand to utility?
 - For Society: Efficient use of healthcare/community resources

Establishing Clinical Utility

- Randomized prospective controlled studies
- Retrospective studies
 - Archived samples
- Issues with:
 - Rare inherited diseases
 - Rare mutations (somatic)
 - Long duration
 - Ethically valid?
 - Inconclusive results
 - Poorly designed
 - Insufficient numbers

EGAPP

- Evaluation of Genomic Applications in Practice and Prevention
- Common conclusion
 - Insufficient evidence
 - ...found insufficient evidence to support a recommendation for or against use of CYP450 testing in adults beginning SSRI treatment for non-psychotic depression.
 - In the absence of supporting evidence..., EGAPP discourages the use of CYP450 testing for patients beginning SSRI treatment until further clinical trials are completed
- Taken as "Evidence Against"
 - SSRI studies extended to other uses
- Re-evaluate with continuing studies


http://www.egappreviews.org/

Circular Problem

Adapted from: Generating Evidence for Genomic Diagnostic Test Development: Workshop Summary: National Academy of Sciences. http://www.nap.edu/catalog.php?record_id=13133

Testing Symptomatic Individuals

- Diagnostic:
 - Explain the clinical symptoms
 - Understand disease course
- Prognostic:
 - Understand likely disease progression
 - Preventive management
- Therapeutic:
 - Determine most effective treatment/management

Asymptomatic Individual

- Predictive testing
- Family history
- Known familial mutations
 - Test affected individual for the benefit of family members
- Population screening
 Newborn screening (State programs)

Testing Cancer Cells (Somatic)

- Diagnostic: identify genetic abnormalities causative of or resulting from disease
- Prognostic: determine aggressiveness of disease/treatment
- Predictive: determine therapy, resistance to therapy

Models

- Fully powered clinical studies not always feasible
 - Underpowered or partial data modeled for useful information?
- Require models for different scenarios? Types
 - Oncology
 - Chain of evidences (biological relationships/pathways)
 - Demonstrative usefulness in one or multiple cancer/specimen types?
 - Define "supportive" and "adequate" evidence
 - Inherited diseases
 - Approximately 4600 known medically relevant genes
 - Show each disease separately?
 - Another 20,000 in genome how many will be shown to be medically relevant?
 - Compare to non-molecular diagnostic pathway/procedures
 - Diagnostic efficacy
- Same assay used for different purposes

Clinical Utility for Oncology

- "Driver" mutations essential for tumor progression
- "Passenger" mutations that might facilitate, but not essential for progression
- Prognosis
 - Help determine aggressiveness of treatment
- Predictive testing for therapy
 - Multiple tumor types *BRAF* V600E
 - Histologically identical tumors- KRAS2

Selected Molecular Tests with Tier 1 cpt

Oncology

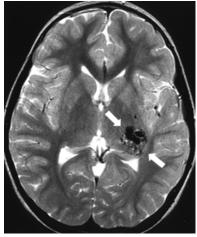
CONDITION	DIAGNOSIS	MANAGEMENT	PROGNOSIS	PREDICTIVE
Acute myeloid leukemia	\checkmark	\checkmark	\checkmark	\checkmark
Stem cell transplant monitoring		\checkmark	\checkmark	\checkmark
Chronic lymphocytic leukemia		\checkmark	\checkmark	\checkmark
Chronic myelogenous leukemia	\checkmark	\checkmark	\checkmark	\checkmark
Colon Cancer		\checkmark	\checkmark	\checkmark
Breast and ovarian cancer		\checkmark	\checkmark	\checkmark
Non-small cell lung cancer		\checkmark	\checkmark	\checkmark
Acute promyelocytic leukemia t(15;17)		✓	✓	\checkmark
Gastrointestinal Stromal Tumors		✓	✓	\checkmark
Melanoma		\checkmark	✓	✓

Clinical Utility for Inherited Diseases

- Many are rare:
 - Approximately 4600 known human genetic disorders
 - Not feasible to show utility for each one
 - Aggregate by disease type, test method?
 - Still may have strong clinical validity/utility
 - lack cpt codes
 - Together, they are substantive
 - 100% of individuals have genetic variants that could affect drug response
 - JAMA 286:2270, 2001.

Selected Molecular Tests with Tier 1 cpt Genetics

CONDITION	DIAGNOSIS	MANAGEMENT	PROGNOSIS	PREDICTIVE
Alpha thalassemia, Hb Bart hydrops fetalis syndrome, HbH disease	✓	✓		\checkmark
Alpha-1-antitrypsin deficiency	✓	✓	✓	\checkmark
Ashkenazi Jewish:				
Bloom syndrome	✓	✓		\checkmark
Canavan disease	✓	\checkmark		\checkmark
Tay-Sachs disease	✓	\checkmark	\checkmark	\checkmark
Cardiomyopathies	✓		✓	\checkmark
Cystic Fibrosis	✓			\checkmark
Cytogenomic constitutional abnormalities (e.g. Kleinfelter, trisomy 21)	✓			✓
Familial adenomatosis polyposis (FAP)	✓		✓	✓
Fragile X	✓		✓	✓
Huntington Disease	✓		✓	✓
Hereditary breast and ovarian cancer	✓		\checkmark	✓
Hereditary hemochromatosis	✓			Limited
Hereditary non-polyposis colorectal cancer, Lynch syndrome	✓		✓	✓
Long QT syndrome	✓		✓	\checkmark
Marfan syndrome	✓	✓	\checkmark	\checkmark
Nonsyndromic hearing loss	✓	✓		\checkmark
Rett syndrome	✓	✓		\checkmark
Spinal Muscular Atrophy	✓	\checkmark	\checkmark	\checkmark


Example: Hereditary Hemorrhagic Telangiectasia

- Appropriate use of health resources
 - Life threatening cerebral/pulmonary manifestations
 - Brain MRI with contrast:
 - Contrast echocardiogram:
 - 20% need F/U of chest CT, radiation exposure
 - Surveillance: every 5 years in affected individuals, or in unaffected individuals until approximately age 40 (unless ruled out by molecular testing)
 - Guidelines available
 - Faughnan J Med Genet 2011;48:73e87

Pictures courtesy of Whitney Wooderchak-Donahue

Single Gene vs Gene Panel

- ASHG:
 - "..., the scope of genetic testing should be limited to singlegene analysis or targeted gene panels based on the clinical presentation of the patient...."
 - Botkin JR et al. Points to consider: Ethical, legal, and psychosocial implications of genetic testing in children and adolescents. ASHG 2015;97:6-21
- Use most focused assay available (as appropriate)
 - Single gene, if meets clinical criteria
 - Small gene panel improves diagnostic yield, if non-classic phenotype
 - Large gene panels common symptoms for numerous diseases, in place of an exome?
 - Exome/genome for combination of symptoms/family history consistent with genetic etiology, but remains undiagnosed

Marfan syndrome

- Tall stature
- Arachnodactyly
- Hypermobile joints
- Scoliosis
- Aortic aneurysm
- Learning disability
 - Positive family history, sudden death in a close relative

Ehler Danlos Syndrome Type IV

- Aneurysm
- Thin, translucent skin
- Extensive bruising
- Hypermobility
- Clubfoot
- Spontaneous pneumothorax

Positive family history, sudden death

or haemothorax

in a close relative

Cummings et al.,

1998 JBJS

http://www.healthinplainen

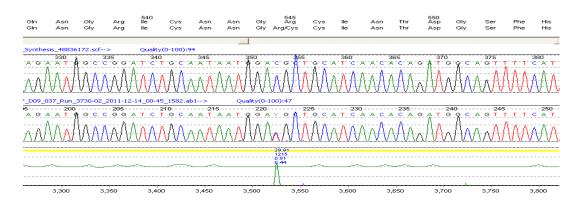
glish.com/health/cardiovasc

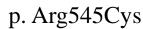
ular/marfan syndrome/inde

x.htm

Loeys-Dietz Syndrome

- Arterial tortuosity
- Hypertelorism
- Bifid (split) or broad uvula
- Aneurysms
- Scoliosis
 - Positive family history, sudden death in a close relative


- Tortuosity, elongation, and aneurysms of major arteries and the aorta
- Aortic stenosis, pulmonary artery or pulmonary valve
- Hypertelorism
- Hypermobile joints
- Arachnodactyly
- Scoliosis
- Hyperextensible skin Positive family history, sudden death in a close relative



Courtesy of Dr. P Bayrak-Toydemir

Marfan Single Gene Assay

- 66 exons
- Mutation positive (~10% positivity rate)
 - Includes known pathogenic and suspected pathogenic
 - 56%: diagnosis based on clinical phenotype
 - 44%: suspected diagnosis of Marfan disease
- ~4% Variants of uncertain clinical significance
 - 64%: suspected diagnosis of Marfan
 - 37%: diagnosis based on clinical phenotype

Clinical Sensitivity of Gene Panel

- Aortopathy panel:
 - 17 genes
 - Each has clinical validity/utility separately
 - Clinical sensitivity: approximately 20% (doubled)
 - Internal data from Dr. P Bayrak-Toydemir

Looking towards the Future: Exome Diagnostic Yield

- Overall
 - 25%
 - N Engl J Med 2013; 369:1502-1511
- Severe Intellectual Disability: 16%
 - N Engl J Med 2012; 367:1921-1929
- Neurological diseases: 64%
 - <u>Brain.</u> 2015 Feb;138(Pt 2):276-83.
- Retinal dystrophies: >50%
 - Am J Opthal online April 2015 doi:10.1016/j.ajo.2015.04.026

Levels of Evidence

- Multiple models needed
 - Randomized control studies
 - Retrospective
 - Adaptive clinical trials
 - Diagnostic yield
 - Observational data
 - Linkage
 - Functional studies
 - Biological relationships/pathways
 - Current care vs molecular diagnostic models
 - Professional organization practice guidelines

Thanks to:

- AMP's Committees
 - Professional Relations
 - FEND working group
 - Clinical Practice
 - Economic Affairs
- ARUP Molecular Genetics/Genomics

Expertise that advances patient care through education, innovation, and advocacy.

www.amp.org

NATIONAL REFERENCE LABORATORY

Department of Pathology

