Pharmacogenetics

V.M. Pratt, Ph.D, FACMG

Objectives

- Understand the *allele nomenclature
- Differentiate between various metabolizers
- Recognize common drugs that can have adverse drug reactions

Pharmacogenetics

Precision Medicine by.....

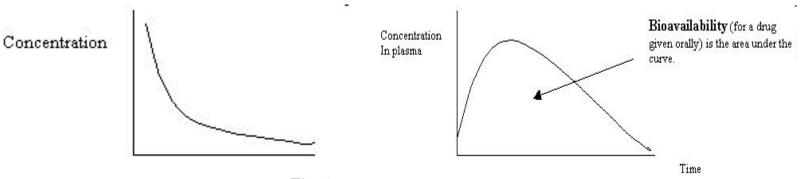
Getting the right dose to the right patient at the right time

Definitions

- the branch of genetics that studies the genetically determined variations in responses to drugs (wordnetweb.princeton.edu/perl/webwn)
- The study of genetic variation that gives rise to differing responses to drugs (en.wiktionary.org/wiki/pharmacogenetics)
- the study of the role of inheritance in the individual variation in drug response (www.etsu.edu/com/genomics/omics/somedefinitions. aspx)
- The study of how different groups of people respond to drugs, based on their genetic makeup (www.gskclinicalstudyregister.com/glossary3.jsp)

Variable Response to Drugs

PATIENTS CAN RESPOND DI	IFFERENTLY	TO THE SAME MEDICINE				
HYPERTENSION DRUGS ACE Inhibitors	10-30%	<u>ŤŤŤŤŤŤŤŤŤŤŤ</u>				
HEART FAILURE DRUGS Beta Blockers	15-25%	ŤŤŤŤŤŤŤŤŤŤŤ				
ANTI-DEPRESSANTS	20-50%	ŤŤŤŤŤŤŤŤŤŤŤ				
CHOLESTEROL DRUGS Statins	30-70%	<u>ŤŤŤŤŤŤŤŤŤŤŤ</u>				
ASTHMA DRUGS Beta-2-agonists	40-70 %	<u>ŤŤŤŤŤŤŤŤŤŤŤ</u> Ť				
Percentage of the patient population for which any particular drug is ineffective						


Partial list of Pharmacogenetic tests

Gene	Drug Metabolized
CCR5	Maraviroc (Selzentry)
CYP2C9 and VKORC1	Warfarin (Coumadin)
<i>CYP2C19</i>	Voriconazole (Vfend®)
CYP2D6	Atomoxetine (Strattera)
CYP2D6	Tamoxifen (Nolvadex)
DPYD	Capecitabine (Xeloda®)
HLA-B*5701	Abacavir (Ziagen)
HLA-B*1502	Carbamazepine (Tegretol®)
HLA-B*5801	Allopurinol
HLA-DRB1*01	Nevirapine (Viramune)
HLA-DRB1*07	Ximelagatran
ТРМТ	Azathioprine (Imuran®)
UGT1A1	Irinotecan (Camptosar®)

Pratt VM, Dunn ST, Weck KE. Personalized Medicine: The Role of Laboratories. Update Magazine, 2008.

• **Pharmacokinetics** is the study of what the body does to a drug.

Time

Pharmacodynamics is the study of what a drug does to the body.

Adverse Drug Reactions (ADRs)

- 6-7% of hospitalizations
- ~100,000 deaths/year (4th leading cause of death)
- Termination of ~20% of drug candidates under development

Pharmacogenomics

- Constitutional/inherited variants Cytochrome P450s (2D6, 2C19, 2C9) VKORC1 UGT1A1 G6PD HLA
- Somatic/tumor-specific variants
 - KRAS
 - BCR/ABL
 - EGFR pathway
 - cKIT
 - BRAF
 - ALK
- Infectious Agents HIV HCV

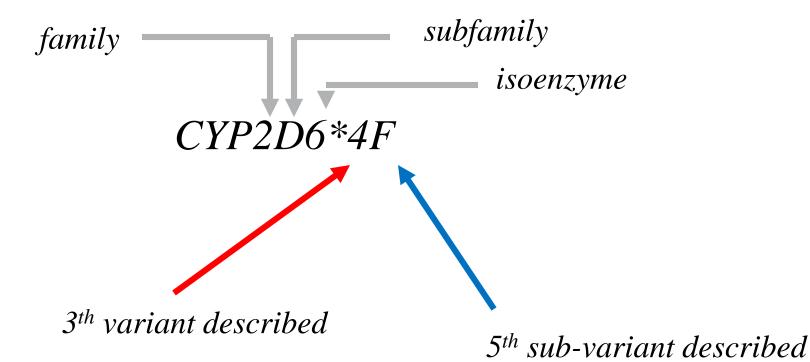
Companion Diagnostic

• Where the drug and pharmacogenetic test are approved by the FDA about the same time.

Submitted together for test and drug coapproval

Inherited/Constitutional variants

CYP450


- Enzyme family
- Predominantly in liver
- Involved in toxin/drug metabolism

CYP450 Nomenclature

- *1 = normal allele (no mutation detected)
- *alleles numbered in order of description
- Sub-alleles alphabetized in order of description
- Website: http://www.cypalleles.ki.se/

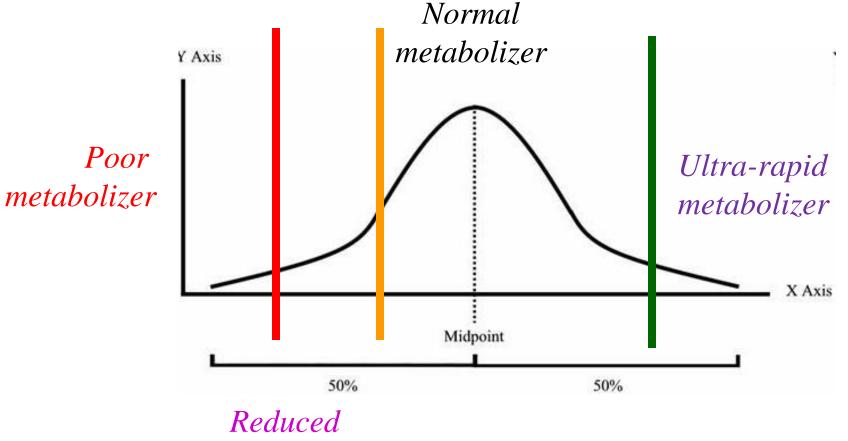
CYP450 Nomenclature

CYP2D6*4 example

*4A	<u>100C>T;</u> 974C>A; 984A>G; 997C>G; 1661G>C; 1846G>A ; <u>4180G>C</u>
*4B	<u>100C>T;</u> 974C>A; 984A>G; 997C>G; 1846G>A ; <u>4180G>C</u>
*4C	<u>100C>T;</u> 1661G>C; 1846G>A ; 3887T>C; <u>4180G>C</u>
*4D	<u>100C>T;</u> 1039C>T; 1661G>C; 1846G>A ; <u>4180G>C</u>
*4E	<u>100C>T;</u> 1661G>C; 1846G>A ; <u>4180G>C</u>
*4F	<u>100C>T;</u> 974C>A; 984A>G; 997C>G; 1661G>C; 1846G>A ; 1858C>T; <u>4180G>C</u>
*4G	<u>100C>T;</u> 974C>A; 984A>G; 997C>G; 1661G>C; 1846G>A ; 2938C>T; <u>4180G>C</u>
*4H	<u>100C>T;</u> 974C>A; 984A>G; 997C>G; 1661G>C; 1846G>A ; 3877G>C; <u>4180G>C</u>
*4J	<u>100C>T;</u> 974C>A; 984A>G; 997C>G; 1661G>C; 1846G>A
*4K	<u>100C>T;</u> 1661G>C; 1846G>A ; 2850C>T; <u>4180G>C</u>
*4L	<u>100C>T;</u> 997C>G; 1661G>C; 1846G>A ; <u>4180G>C</u>
*4M	-1235A>G; 746C>G; 843T>G 974C>A; 984A>G; 997C>G; 1661G>C; 1846G>A ; 2097A>G; 3384A>C; 3582A>G; 4401C>T

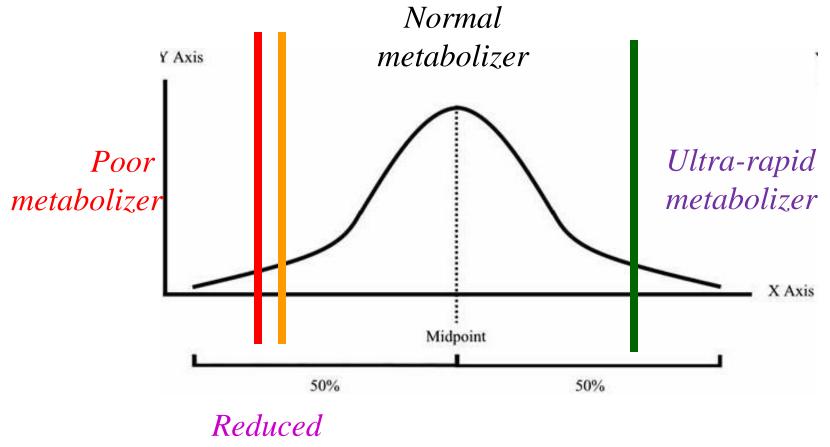
http://www.cypalleles.ki.se/cyp2d6.htm

CYP allele definition - function

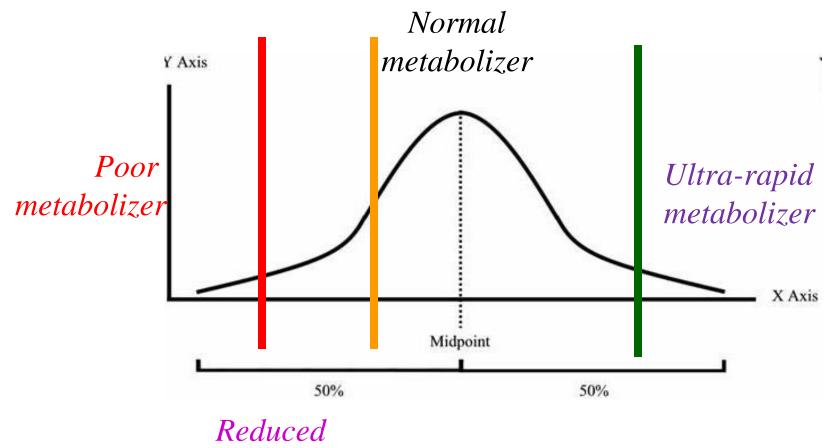

- Normal
- Decreased
- No function
- Increased
- Unknown function
- Uncertain function

CYP phenotype – Metabolizer status

- Normal Metabolizer (EM)
 2 functional alleles
- Reduced Metabolizer (IM)
 1 decreased function allele
 1 no function allele
- Poor Metabolizer (PM)
 2 no function alleles
- Rapid Metabolizer (RM)
 1 increased function allele
- Ultra-rapid metabolizer (UM)
 >1 increased function allele


Normal Distribution

metabolizer


Normal Distribution

metabolizer

Normal Distribution



metabolizer

Certain non-drugs can cause affect CYP metabolism

• Grapefruit (juice) inhibits CYP3A4

Broccoli induces CYP1A2

• St. John's wort induces CYP3A4

http://pested.ifas.ufl.edu/newsletters/2009-01/Pesticide_Potpourri.htm http://happyhealthybalance.blogspot.com/2009/12/eat-more-broccoli.html

http://www.nlm.nih.gov/medlineplus/ency/imagepages/19329.htm http://en.wikipedia.org/wiki/St_John%27s_wort

*ADAM

CYP2D6

- Chromosome 22
- More than 100 alleles described
- Estimated to metabolize 25% of all drugs
- PMs

Caucasians: 5-10%

CYP2D6

Metabolizes
 Tamoxifen

Antidepressants

• Fluoxetine (Prozac)

Pain management

• Codeine (CPIC Guidelines)

Antipsychotics

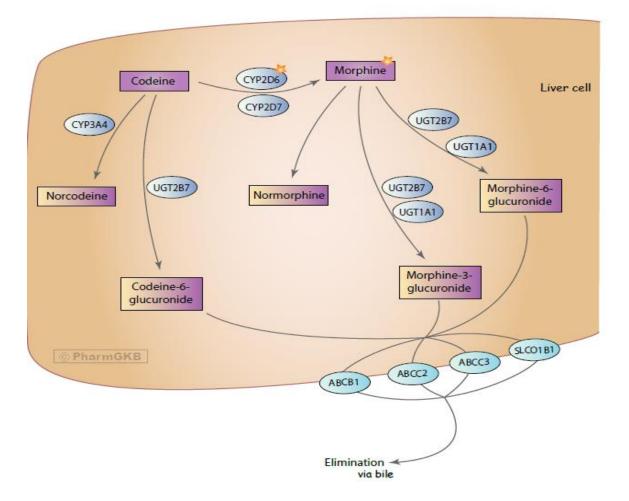
Inhibitors
 Bupropion (Wellbutrin)
 Fluoxetine (Prozac)
 Paroxetine (Paxil)

Example: Codeine

- · Codeine is used in the treatment
 - ➤ Pain
 - Cough
 - Diarrhea
- Risk cannot be ruled out during pregnancy.
- The drug has a currently accepted medical use in treatment in the US or a currently accepted medical use with severe restrictions.
- Abuse of the drug may lead to severe psychological or physical dependence.

Codeine

- Metabolized by CYP2D6 to more active form \rightarrow morphine
- CPIC Guidelines


FDA Postmarket Drug Safety Information for Patients and Providers Use of **Codeine Products in Nursing Mothers**

and I	U.S. Department of Health & Human Services	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	🔊 www.hhs.gov				
	U.S. Food and Drug Administration		A-Z Index Search	90			
	Home Food Drugs Medical Devices Vaccines, Blood & Biologics Anim	nal & Veterinary	al & Veterinary Cosmetics Radiation-Emitting Products Tobacco Products				
	Drugs Home + Drugs + Drug Safety and Availability + Postmarket Drug Safety Information f		🛟 Share 📄 Email this Page 🛛 🖶 Print this page 🖽 🖂 Change Font Size				
	Drug Safety and Availability Postmarket Drug Safety Information for Patients and 8/2007	Products	in Nursing Mothers - Questions a	nd			
Table 1: Approximat of codeine in differen	te number of ultra-rapid metabolizers nt populations	An is it used? In many rescription pain relievers and over-the-counter cough syrups. Vely for many rears in many people, including nursing mothers. In medical ally considered the afest narcotic pain reliever for a breastfeeding woman and her					
Population	Ultra-rapid metabolizers (per 100 people)	" body, it must be changed (in tabolized) to morphine to relieve pain. Morphine nd is also responsible for side eth to that some people may experience. a-rapid metabolizer?					
Caucasians	1-10	morphine in the liver by an enzyme. Some people have a variation of this eine to morphine faster and more completely that in other people. These -rapid metabolizers of codeline.					
African Americans	3	metabolizers varies among different population groups. An people who are ultra coffic likelihood of having an adverse event when taking codeline is not known.					
Chinese			te number of ultra-rapid metabolizers nt populations				
Japanese	1	ation	Ultra-rapid metabolizers (per 100 people)				
Hispanics	1		1-10				
North Africans		ricans	3				
Ethiopians	16-28		1				
Saudi Arabians			1				
	North Arn Ethiopians Saudi Arai		16-28				
	2. Which are in FDA and an alter should addres 2						

http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm118113.htm

Codeine Metabolism Pathway

Codeine dosing

• IMs

Consider increased dose; if no pain relief consider and alternate analgesics

• PMs

Avoid codeine and tramadol

• UMs

Avoid codeine and tramadol

CPIC Guidelines for Codeine

Likely phenotype*	ikely phenotype* Activity score Genoty		Examples of	Implications for	Recommendations for	
			genotypes	codeine metabolism	codeine therapy	
Ultrarapid	>2.0	An individual carrying more	*1/*1xN,	Increased formation of	Avoid codeine use due to	
metabolizer (~1-2%		than two copies of functional	*1/*2xN	morphine following	potential for toxicity. Consider	
of patients)		alleles		codeine administration,	alternative analgesics such as	
				leading to higher risk of	morphine or a nonopiod.	
				toxicity	Consider avoiding tramadol.	
Normal metabolizer	1.0-2.0**	An individual carrying two	*1/*1, *1/*2,	Normal morphine	15-50 mg every 4h as needed	
(~77-92% of		alleles encoding full or	*2/*2, *1/*41,	formation	for pain (label	
patients)		reduced function or one full	*1/*4, *2/*5,		recommendation)	
		function allele together with	*10/*10			
		either one nonfunctional or				
		one reduced-function allele				
Reduced	0.5**	An individual carrying one	*4/*10, *5/*41	Reduced morphine	Begin with 15-60 mg every 4h	
metabolizer (~2-		reduced and one		formation	as needed for pain. If no	
11% of patients)		nonfunctional allele			response, consider alternative	
					analgesics such as morphine or	
					a nonopiod. Monitor tramadol	
					use for response.	
Poor metabolizer	0	An individual carrying no	*4/*4, *4/*5,	Greatly reduced	Avoid codeine use due to lack	
(~5-10% of patients)		functional alleles	*5/*5, *4/*6	morphine formation	of efficacy. Consider	
				following codeine	alternative analgesics such as	
				administration, leading	morphine or a nonopiod.	
				to insufficient pain	Consider avoiding tramadol.	
				relief		

Various Assays/Platforms for CYP2D6

Platform	Legal Status
	FDA-cleared
Luminex xTag TM	FDA-cleared
Agena (formerly Sequenom)	RUO*
LifeTech (Fisher)	LDT
Affymetrix	RUO*

CYP2C19

- Chromosome 10
- More than 25 alleles described
- PMs

Caucasians: 3-5% Asians: 15-20%

CYP2C19

Metabolizes

Proton Pump Inhibitors

• Omeprazole (Prilosec)

Antidepressants

- amitriptyline
- Citalopram/escitalopram
- clomipramine

Clopidogrel (Plavix) (CPIC Guidelines)

Predicted metabolizer phenotypes based on CYP2C19 genotype

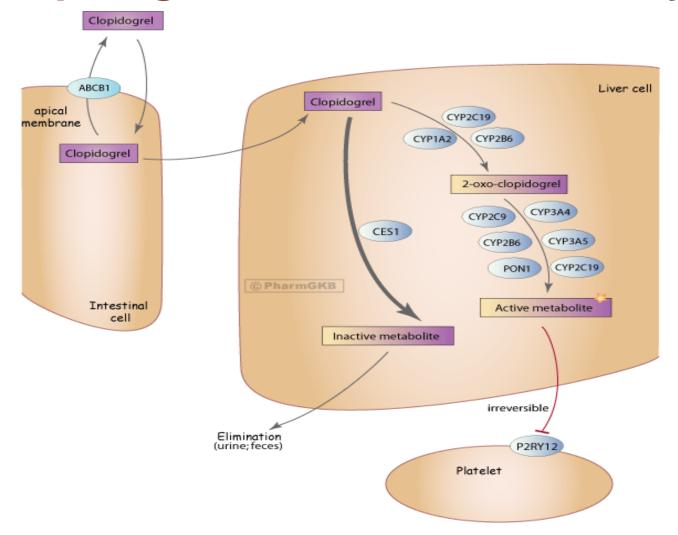
	Predicted Metabolizer Phenotype (Average Multi-Ethnic Frequency ¹)								
Allele	*1	*2	*3	*4	*5	*6	*7	*8	*17
*1	EM (35-50%)	IM (17-35%)	IM (1-11%)	IM (<1%)	IM (<1%)	IM (<1%)	IM (<1%)	IM (<1%)	UM (3-27%)
*2		PM (2-8%)	PM (0-5%)	PM (<1%)	PM (<1%)	PM (<1%)	PM (<1%)	PM (<1%)	IM ² (1-6%)
*3			PM (<1%)	PM (<1%)	PM (<1%)	PM (<1%)	PM (<1%)	PM (<1%)	IM^2 (<1%)
*4				PM (<1%)	PM (<1%)	PM (<1%)	PM (<1%)	PM (<1%)	IM^2 (<1%)
*5					PM (<1%)	PM (<1%)	PM (<1%)	PM (<1%)	$[M^2] (<1\%)$
*6						PM (<1%)	PM (<1%)	PM (<1%)	IM^2 (<1%)
*7							PM (<1%)	PM (<1%)	IM^2 (<1%)
*8								PM (<1%)	IM ² (<1%)
*17									UM (1-5%)

Example: Clopidogrel (Plavix®)

- inhibit blood clots in coronary artery disease, peripheral artery disease, and cerebrovascular disease.
- Metabolized by cytochrome CYP2C19 to active form
 - 2-{1-[1-(2-chlorophenyl)-2-methoxy-2-oxoethyl]-4sulfanyl-3-piperidinylidene}acetic acid
- FDA announced that clopidogrel cannot be taken with Prilosec (omeprazole) and Nexium (esomeprazole) Inhibitors of 2C19

Clopidogrel use

- Prevention of vascular ischemic events in patients with symptomatic atherosclerosis
- Acute coronary syndrome without STsegment elevation (NSTEMI)
- ST elevation MI (STEMI)
- It is also used, along with aspirin, for the prevention of thrombosis after placement of intracoronary stent



FDA changed Plavix Label

- 12 March 2010
 - Warn about reduced effectiveness in patients who are poor metabolizers of Plavix. Poor metabolizers do not effectively convert Plavix to its active form in the body.
 - Inform healthcare professionals that tests are available to identify genetic differences in CYP2C19 function.
 - Advise healthcare professionals to consider use of other anti-platelet medications or alternative dosing strategies for Plavix in patients identified as poor metabolizers.
- Updated: 10/03/2016
 - The FDA-approved drug label for clopidogrel (Plavix) warns that patients who are CYP2C19 poor metabolizers may have diminished effectiveness of the drug as compared to patients with normal CYP2C19 function. The drug label suggests that a different platelet P2Y12 inhibitor be used in patients identified as CYP2C19 poor metabolizers.

Clopidogrel Metabolism Pathway

http://www.pharmgkb.org/pathway/PA154424674#

Clopidogrel dosing

• IMs

Prasugrel, ticagrelor or other alternative therapy (if no contraindication)

• PMs

Prasugrel, ticagrelor or other alternative therapy (if no contraindication)

• UMs

Clopidogrel label-recommended dosage and administration

CPIC Guidelines for Clopidogrel

Likely phenotype	Genotypes	Examples of genotypes	Implications for clopidogrel	Therapeutic recommendations
Ultrarapid metabolizer (UM) (~5-30% of patients)	An individual carrying two increased activity alleles (*17) or one functional allele (*1) plus one increased activity allele (*17)	*1/*17, *17/*17	Increased platelet inhibition; decreased residual platelet aggregation ¹	Clopidogrel - label recommended dosage and administration
Extensive metabolizer (EM) (~35-50% of patients)	An individual carrying two functional (*1) alleles	*1/*1	Normal platelet inhibition; normal residual platelet aggregation	Clopidogrel - label recommended dosage and administration
Intermediate metabolizer (IM) (~18-45% of patients)	An individual carrying one functional allele (*1) plus one loss-of-function allele (*2-*8) or one loss- of-function allele (*2-*8) plus one increased activity allele (*17) ²	*1/*2, *1/*3, *2/*17	Reduced platelet inhibition; increased residual platelet aggregation; increased risk for adverse cardiovascular events	Alternative antiplatelet therapy (if no contraindication); e.g., prasugrel, ticagrelor
Poor metabolizer (PM) (~2-15% of patients)	An individual carrying two loss-of-function alleles (*2-*8)	*2/*2, *2/*3, *3/*3	Significantly reduced platelet inhibition; increased residual platelet aggregation; increased risk for adverse cardiovascular events	Alternative antiplatelet therapy (if no contraindication); e.g., prasugrel, ticagrelor

Various Assays/Platforms for CYP2C19

Platform	Legal Status	
Affymetrix	RUO*	
Agena	RUO*	
Autogenomics INFINITI TM	FDA-cleared	
GenMark eSensor	RUO*	
Luminex xTag TM	FDA-cleared	
LifeTech (Fisher)	LDT	
Nanosphere Verigene	FDA-cleared	
Spartan Bioscience	FDA-cleared	
VerifyNow P2Y12 Test**	FDA-cleared *RUO = Investigational Us	se Only

**Platelet function assay

Alleles tested by each platform

Platform	Affymetrix DMET	Agena Bioscienc es (Sequeno m) iPLEX ADME	Autogenomi cs INFINITI	GenMark eSensor	Luminex xTAG	LifeTech Taqman	Nanosphe re Verigene	Spartan Bioscien ce
Alleles tested	*2A, *2B, *3, *4, *5, *6, *7, *8, *9, *10, *12, *13, *14, *15, *17, 439FS, 241FS, V331I	*1B, *2, *3, *4, *5A, *5B, *6, *7, *8, *12, *17	*2, *3, *17	*2, *3, *4, *5, *6, *7, *8, *9, *10, *13, *17		*2, *3, *4, *4B, *6, *8, *17 (custom)	*2, *3, *17	*2, *3, *17

Example: Warfarin (Coumadin®)

- Named for the Wisconsin Alumni Research Foundation (WARF) that patented it
- Originally marketed as rat poison
- 1951, a military recruit attempted suicide research in anticoagulation properties
- Prescribed more 30M times in the US each year
- Accounts for over 43,000 ER visits each year
- 2 genes associated with 40% of variability in drug response CYP2C9 VKORC1

Warfarin Dosing

- www.Warfarindosing.org
- Individual dosing of Warfarin Genotype
 - VKORC1
 - CYP2C9

Weight

Height

Age

Other interacting drugs

 Monitor with PT (prothrombin time)/INR (International Normalized Ratio) 2.0-3.0

Risk for bleeding when \geq 4.0

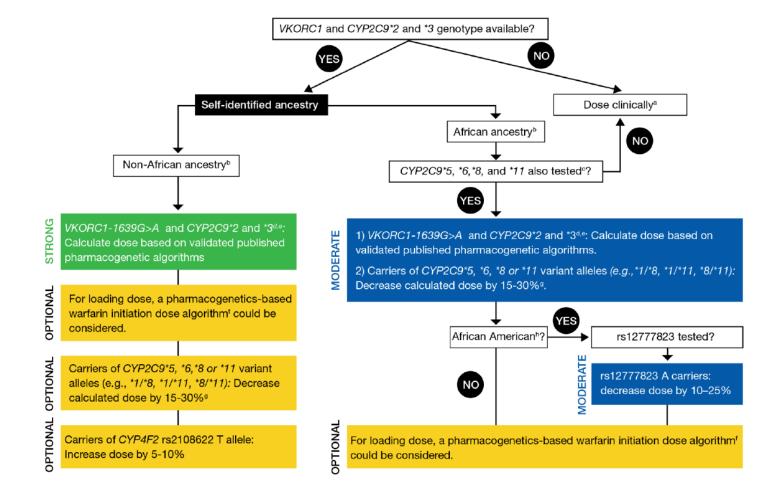
Recommended daily warfarin doses (mg/day) to achieve a therapeutic INR based on CYP2C9 and VKORC1

VKORC1 Genotype (- 1639G>A, rs9923231)	CYP2C9*1/*1	<i>CYP2C9*1/*2</i>	<i>CYP2C9*1/*3</i>	<i>CYP2C9*2/*2</i>	<i>CYP2C9*2/*3</i>	<i>CYP2C9*3/*3</i>
GG	5-7	5-7	3-4	3-4	3-4	0.5-2
GA	5-7	3-4	3-4	3-4	0.5-2	0.5-2
АА	3-4	3-4	0.5-2	0.5-2	0.5-2	0.5-2

Reproduced from updated warfarin (Coumadin®) product label

CYP2C9

- Chromosome 10
- More than 35 alleles described
- More commonly SNPs than haplotype *2 (R144C, c.3608C>T)
 - Caucasian frequency: 12.2%
 *3 (I359L, c.42614A>C)
 - Caucasian frequency: 7.9%
 - *4 (I359T, c.42615T>C)
 - *5 (D360E, c.42619C>G)
 - African American frequency: 1.7%
 - *6 (10601delA, c.818delA)
 - African American frequency: 2.7%



VKORC1 (vitamin K1 2,3-epoxide reductase subunit 1)

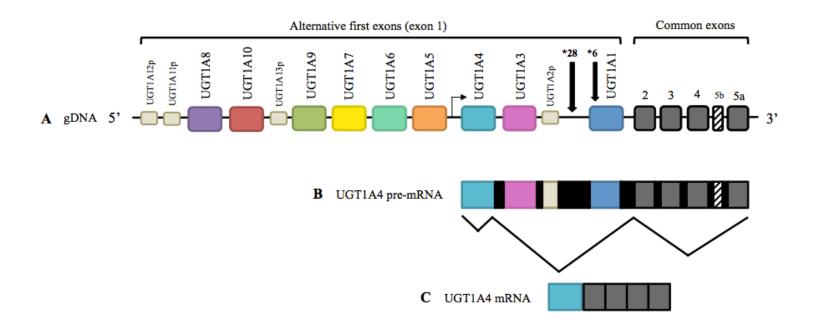
- In linkage disequilibrium (haplotype)
 -1639G>A
 - 1173C>T
 - 1542G>C
 - 2255T>C
 - 3730G>A

CPIC Warfarin dosing Algorithm

https://cpicpgx.org/guidelines/guideline-for-warfarin-and-cyp2c9-and-vkorc1/

Various Assays/Platforms for Warfarin

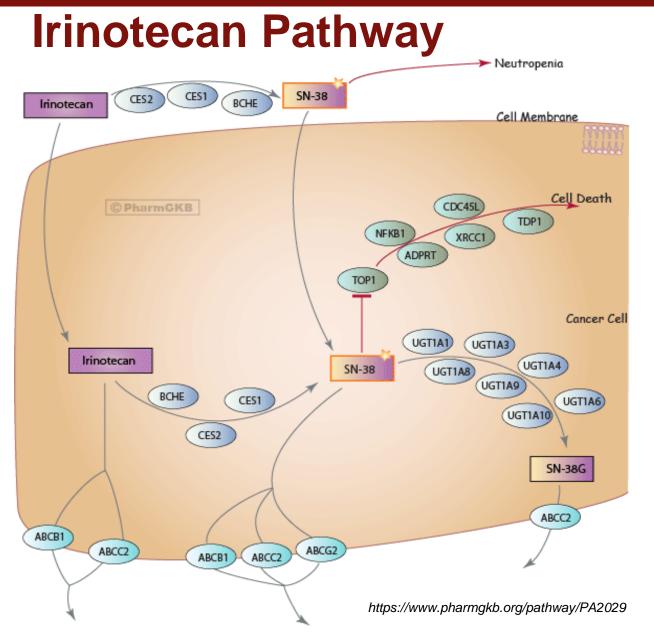
Platform	Legal Status
Autogenomics INFINITI TM	FDA-cleared
Idaho Technologies	Analyte-Specific Reagents
Luminex	IUO**
Nanosphere	FDA-cleared
Osmetech	FDA-cleared
TrimGen	FDA-cleared
LifeTech (Fisher)	LDT
Affymetrix	RUO*
Agena (Sequenom)	RUO* *RUO = Research Use Only **IUO = Investigational Use Only



UGT1A1

- UDP-glucuronosyltransferase 1A1
- Chromosome 2
- UGT1 complex contains at least 12 promoters/first exons that can be spliced and joined with common exons 2 through 5
- Irinotecan (Camptosar®)
 Metastatic colon cancer
- Atazanavir (EVOTAZ[™])
 HIV therapy
- Gene involved in Gilbert syndrome
 hyperbilirubinemia

UGT1A1


https://www.pharmgkb.org/gene/PA420#tabview=tab3&subtab=31

UGT1A1 and irinotecan

- TA repeat in promoter
- Inactivates active form of irinotecan (SN-38)
 Note: irinotecan is inactive and activated in the body (see pathway)
 Called Phase II metabolism
- *28 (TA₇) metabolizes active irinotecan more slowly

increased risk for toxicity including high grade neutropenia and/or diarrhea

UGT1A1 Frequency (overall)

- $(TA)_7 = *28$
 - o **34%**
 - Caucasians: 26-31%, African Americans: 42-56%, Asians: 9-16%
- $(TA)_5 = *36$
 - o **2%**
 - African Americans (3-10%)
- $(TA)_8 = *37$
 - o **1%**
 - African Americans (2-7%)

Irinotecan dosing

• *1/*28

No dosing information

• *28/*28

Dose >250mg/m²: reduce initial dose by 30%. Increase dose in response to neutrophil count. Dose <=250mg/m²: no dose adjustment.

Irinotecan FDA labeling

- When administered in combination with other agents, or as a single-agent, a reduction in the starting dose by at least one level of Irinotecan Hydrochloride Injection, USP should be considered for patients known to be homozygous for the UGT1A1*28 allele [see Dosage and Administration (2.1) and Warnings and Precautions (5.3)]. However, the precise dose reduction in this patient population is not known, and subsequent dose modifications should be considered based on individual patient tolerance to treatment
- UGT1A1 Testing: A laboratory test is available to determine the UGT1A1 status of patients. Testing can detect the UGT1A1 6/6, 6/7 and 7/7 genotypes.

Irinotecan dosing decision tree

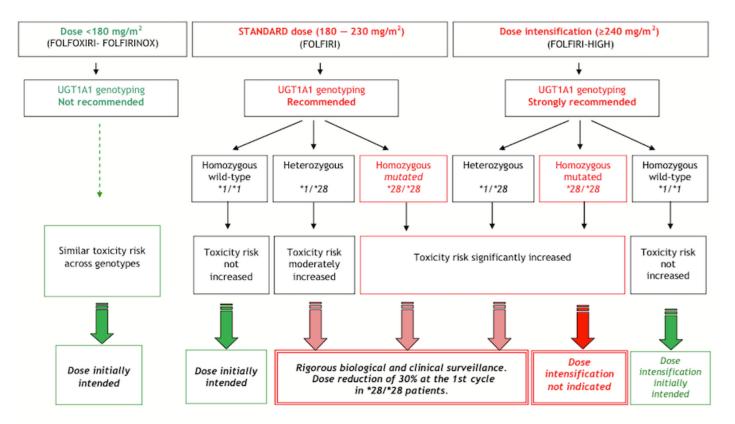


Figure 1 Decision tree for UGT1A1 genotyping depending on initially intended irinotecan dose.

Various Assays/Platforms for UGT1A1

Platform	Legal Status
Hologic/Third Wave	FDA-cleared*
TA repeat analysis and sizing	LDT

*Vendor discontinued assay

Somatic variants

Partial list of Pharmacogenetic tests

Gene	Drug Metabolized	
ABL kinase domain	Dasatinib (Sprycel®)	
ABL kinase domain	nilotinib (Tasigna TM)	
ALK	crizotinib (Xalkori®)	
BCR/ABL	imatinib mesylate (Gleevec/Glivec)	
BRAF	vemurafenib (Zelboraf®)	
BRAF	dabrafenib (Tafinlar))	
BRAF	trametinib (Mekinist)	
ERBB2 (HER2/NEU)	Trastuzumab (Herceptin®)	
EGFR	Erlotinib (Tarceva®)	
EGFR	gefitinib (Iressa®)	
KRAS	Cetuximab (Erbitux®)	
KRAS	panitumumab (Vectibix™)	

Pratt VM, Dunn ST, Weck KE. Personalized Medicine: The Role of Laboratories. Update Magazine, 2008.

Chronic myeloid leukemia (CML)

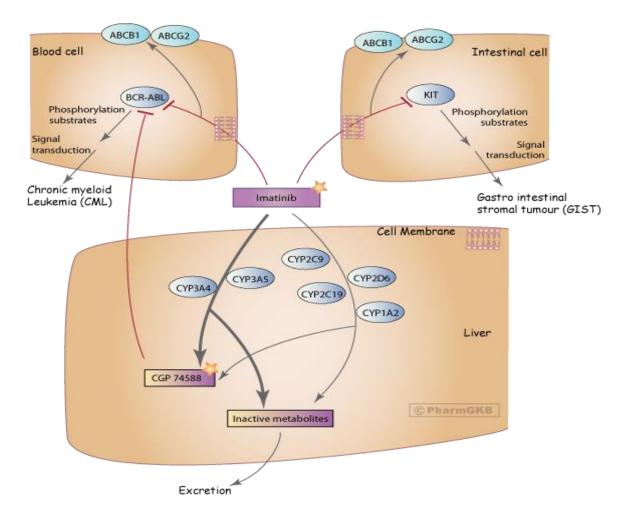
- 1960 Philadelphia chromosome
- 1973 t(9;22)(q34;q11)
- 1980s BCR/ABL1
 Major breakpoint: p210 (e13a2 [b2a2], e14a2 [b3a2])

 Minor breakpoint: p190 (e1a2)

Other breakpoint: p230

G LETTER Multurny

• 1998 - Imatinib Mesylate


Imatinib Mesylate (Gleevec, Glivec)

- small molecule inhibitor of protein tyrosine kinases
- Primarily metabolized by CYP3A4 and CYP3A5 to an active metabolite, an Ndemethylated piperizine derivative
- Treatment for
 - CML (chronic myelogenous leukemia); Philadelphia chromosome positive

Gastrointestinal stromal tumors (GIST) that harbor *KIT* mutations

Imatinib Mesylate Metabolism Pathway

http://www.pharmgkb.org/pathway/PA164713427

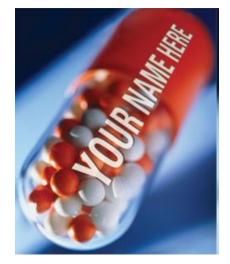
Imatinib Mesylate resistance

 Need to sequence ABL1 kinase domain specific single amino acid substitutions, which interfere with binding of the drug to the kinase

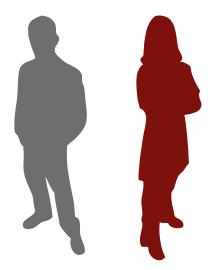
T3151I

• Additional drugs available

CPIC Guidelines


https://www.pharmgkb.org/view/dosing-guidelines.do?source=CPIC#

abacavir	CPIC Guideline for abacavir and HLA-B
allopurinol	CPIC Guideline for allopurinol and HLA-B
amitriptyline	CPIC Guideline for amitriptyline and CYP2C19,CYP2D6
atazanavir	CPIC Guideline for atazanavir and UGT1A1
azathioprine	CPIC Guideline for azathioprine and TPMT
capecitabine	CPIC Guideline for capecitabine and DPYD
carbamazepine	CPIC Guideline for carbamazepine and HLA-B
citalopram	CPIC Guideline for citalopram, escitalopram and CYP2C19
clomipramine	CPIC Guideline for clomipramine and CYP2C19,CYP2D6
clopidogrel	CPIC Guideline for clopidogrel and CYP2C19
codeine	CPIC Guideline for codeine and CYP2D6
desipramine	CPIC Guideline for desipramine and CYP2D6
doxepin	CPIC Guideline for doxepin and CYP2C19,CYP2D6
escitalopram	CPIC Guideline for citalopram, escitalopram and CYP2C19
fluorouracil	CPIC Guideline for fluorouracil and DPYD
fluvoxamine	CPIC Guideline for fluvoxamine and CYP2D6
imipramine	CPIC Guideline for imipramine and CYP2C19,CYP2D6
ivacaftor	CPIC Guideline for ivacaftor and CFTR
mercaptopurine	CPIC Guideline for mercaptopurine and TPMT
nortriptyline	CPIC Guideline for nortriptyline and CYP2D6
paroxetine	CPIC Guideline for paroxetine and CYP2D6
peginterferon alfa-2a	CPIC Guideline for peginterferon alfa-2a, peginterferon alfa-2b, ribavirin and IFNL3
peginterferon alfa-2b	CPIC Guideline for peginterferon alfa-2a, peginterferon alfa-2b, ribavirin and IFNL3
phenytoin	CPIC Guideline for phenytoin and CYP2C9,HLA-B
rasburicase	CPIC Guideline for rasburicase and G6PD
ribavirin	CPIC Guideline for peginterferon alfa-2a, peginterferon alfa-2b, ribavirin and IFNL3
sertraline	CPIC Guideline for sertraline and CYP2C19
simvastatin	CPIC Guideline for simvastatin and SLCO1B1
tacrolimus	CPIC Guideline for tacrolimus and CYP3A5
tegafur	CPIC Guideline for tegafur and DPYD
thioguanine	CPIC Guideline for thioguanine and TPMT
trimipramine	CPIC Guideline for trimipramine and CYP2C19,CYP2D6
warfarin	CPIC Guideline for warfarin and CYP2C9,VKORC1


Conclusions

- Pharmacogenetics is a rapidly growing field
- Many variables affect drug metabolism
 - Genotypes
 - Environment
- Genotype/phenotypes correlations are imprecise

Questions

