Genomic Medicine in Pediatric Patients – Obstacles and Future Directions

Center for Applied Genomics, Children's
Hospital of Philadelphia
Hakon Hakonarson, MD, PhD

Bethesda, January 22, 2014

Three Areas

- Review of Current Pediatric Projects
 - Phenotyping
 - Consent
 - Sequencing
- New approaches to analyzing existing data
- Prospective directions a custom-based informative chip

1. Current Pediatric Projects

1a. Phenotypes - Pediatric-Led Algorithms

Phenotype	Primary	Secondary	Status
Asthma	CAG	Marshfield CCHMC	Completed by all Centers GWAS ongoing
Atopic Dermatitis	CAG	Marshfield	Ready for eMERGE-wide dissemination
Obesity	CCHMC/ Boston	CAG	Validated
Autism	CCHMC/ Boston	CAG	Undergoing validation
ADHD	CAG	?	In development
GERD	CAG	?	In development
Lipids	CAG	?	In development
Others?	CCHMC?	?	5

Asthma

Center	Cases	Controls	C:C Ratio
CCHMC	20	1,582	79.1 : 1
СНОР	4,598	9,470	2.1:1
Geisinger	204	1,098	5.4 : 1
Group Health	131	949	7.2 : 1
Marshfield	255	869	3.4:1
Mayo	205	3,117	15.2 : 1
Mount Sinai	743	1,062	1.4:1
Northwestern	234	1,943	8.3 : 1
Vanderbilt	326	1,336	4.1:1
TOTAL	6,716	21,426	3.2:1

Adult-Led Algorithms

	Cases	Controls		Cases	Controls	
	C.Diff			AAA		
ССНМС	15	0	ССНМС			
СНОР	165	178	СНОР			
All Sites	1,919	10,437	All Sites	1,103	16,643	
	VTE		Occ	ular Hyperten	sion	
ССНМС			ССНМС			
СНОР	140	469	СНОР			
All Sites	4,460	23,153	All Sites	771	7,477	
	Diverticulosis		Glaucoma			
ССНМС			ССНМС			
СНОР			СНОР			
All Sites	6,060	4,049	All Sites	1,124	4,568	
	Zoster			Ace-I Cough		
ССНМС			ССНМС			
СНОР			СНОР			
All Sites	2,446	24,396	All Sites	1,792	8,476	
	Extreme Obesi	ty		TOTAL		
ССНМС			ССНМС	15	0	
СНОР	2	42	СНОР	307	689	
All Sites	1,293	7,239	All Sites	20,968	106,438	

Adult-Led Algorithms

	Cases	Controls		Cases	Controls	
	C.Diff			AAA		
ССНМС	15	0	ССНМС			
СНОР	165	178	СНОР			
All Sites	1,919	10,437	All Sites	1,103	16,643	
	VTE		Oc	cular Hyperten	sion	
ССНМС			ССНМС			
СНОР	140	469	СНОР			
All Sites	4,460	23,153	All Sites	771	7,477	
	Diverticulosis		Glaucoma			
ССНМС			ССНМС			
СНОР			СНОР			
All Sites	6,060	4,049	All Sites	1,124	4,568	
	Zoster			Ace-I Cough		
ССНМС			ССНМС			
СНОР			СНОР			
All Sites	2,446	24,396	All Sites	1,792	8,476	
	Extreme Obesit	:y		TOTAL		
ССНМС			ССНМС	15	0	
СНОР	2	42	СНОР	307	689	
All Sites	1,293	7,239	All Sites	20,968	106,438	

Major Obstacle

- Incongruity between pediatric and adult data sets:
 - Adult algorithms that exclude or have low frequency in pediatric patients
 - Pediatric algorithms that exclude or have low frequency in adult populations

Options

- Adult/pediatric sites pursue entirely separate paths for phenotyping
- Revise list of candidate phenotypes to increase overlap
- Proceed as-is (i.e. on a case-by-case basis)
- Utilize divergent primary/validation strategy:
 - Adult sites for primary analysis, pediatric for validation

and

Pediatric sites for primary analysis, adult sites for validation

1b. Consent (Kyle Brothers) Practical Guidance on Informed Consent:

- Consent from one parent is adequate
- Children should be asked to provide assent starting with ages 7 through 10.
- Older adolescents, perhaps those older than 14 years of age, in a "co-consent" process.
- Sharing de-identified data is appropriate for pediatric biobanks
- Identified pediatric data should generally not be retained beyond age of majority without consent
- It is acceptable for a pediatric biorepository to return results but should take individual preferences into account
- Result should only be returned when both the adolescent and her parents agree

1c. Sequencing Recap: Pediatric Centers

	DCII	CCLINAC	CHOD	CUC Coio	ingar N	/lough	N/01/0	NACCNA	NILL	1/11
_	BCH	ССНМС	СНОР		inger N		Mayo	MSSM	NU	VU
Site Information	Χ	Χ	Χ		X	X	X	Χ	X	X
Recruitment	X	Χ	Χ	I	n		Χ	In	Χ	Χ
Process Descriptive				prog	gress			progress		
Meta-Data				·						
Recruitment		Χ	Χ				Χ		Χ	Χ
Statistics										
PGRNSeq	n/a	n/a	Χ			n/a	Χ		n/a	n/a
Sequencing										
Descriptive Meta-										
Data										
PGRNSeq	n/a	n/a	Χ			n/a	Χ		n/a	n/a
Quantitative										
Measures										
Validation		In	Χ				Χ		Χ	Χ
Descriptive Meta-		progress								
Data										
Validation			Χ				Χ		In	In
Quantitative									progres	s progress
Measures										
EHRIntegration and			Χ				X		Χ	In
CDS Descriptive										progress
Meta-Data										

2. New approaches to analyzing existing data

Proposed New Approaches to Existing Data

- Copy Number Variants Tools and Opportunities
- Imputing Drug-Gene Interactions from GWAS data
- CNV Analysis and Sequencing Data
- High-sensitivity GWAS and Functional/biological annotation using publicly accessible resources
 - Gene-Based Association Testing (GBAT)
 - Tissue Specific Gene Set Enrichment Analysis
 - Immuno-Cell Types Gene Set Enrichment Analysis
 - Pathways, Protein Interaction, and Text-Based
 Enrichment Analysis: Dapple, Webgestalt, String,
 David, IPA, Other

2a. Copy Number Variants and Existing Data

- CNVs are the primary mode by which an individual acquires a mutation, and occur at a rate of approximately 1.7 × 10⁻⁶ per locus as opposed to 1.8 × 10⁻⁸ for sequence variation (Lupski et al., 2007)
- eMERGE includes >56,000 genotypes linked with electronic medical records (EMRs).
- Largely untapped resource

Range of approaches are available for detecting CNVs

Opportunity

- Considerable CNV expertise in eMERGE:
 - CHOP Developed PennCNV
 - CHOP Developed PareseCNV
 - PennCNV-Seq currently in development
- Revisit existing phenotypes
- Catalog Pathogenicity

Pathogenicity - Obstacle:

- The Database of Genomic Variation (DGV)
 currently lists over 100,000 published, unique,
 CNVs across the genome.
- However, underlining studies are inconsistent in terms of platforms, QC, methodology, etc.
- Duclos et al. (2011) "Urgent need to validate the frequencies and boundaries of the CNVs recorded in the DGV.

Pathogenecity - eMERGE to the Rescue?

- CNV expertise
- Genotypes centralized
- Critically, records are EMR-linked
 - Provide proper control data (i.e. not just absence of one particular phenotype)
 - Increase confidence that what is catalogued as benign is indeed benign

2b. Imputing Drug-Gene Interactions from GWAS Data

- TPMT: enzyme involved in the metabolism of purine analogs
- Used as chemotherapeutic and immunosuppressant agents
- Due to the potential cytotoxicity and narrow therapeutic index, the FDA recommends TPMT testing prior to treatment

Imputing Drug-Gene Interactions, Methods

- N = 87,979 (CHOP) genotyped with
 - Infinium II HumanHap550 (550; N=45,893)
 - Human610-Quad version 1 (Quad; N=42,086)
- Imputation with IMPUTE2
- Four most common defective alleles imputed
 - *2 (rs1800462)
 - *3A (rs1800460 and rs1142345)
 - *3B (rs1800460)
 - *3C (rs1142345)

Imputing Drug-Gene Interactions, Results

	Caucasian		AA (N= 1	16,519)	Hispani	С	Asian		Total	
	(N=63,997)			(N=5,764)		(N=1,698)		(N=87,978)		
Allele	N	%	N	%	N	%	N	%	N	%
*1	122,787	95.93	31,225	94.51	11,020	95.59	3,302	97.23	168,333	95.67
*3A	4,305	3.36	303	0.92	334	2.90	19	0.56	4,961	2.82
*3B	86	0.07	1	0.00	12	0.10	0	0.00	99	0.06
*3C	817	0.64	1509	4.57	162	1.41	75	2.21	2,563	1.46
Genotype	N	%	N	%	N	%	N	%	N	%
*1/*1	58,981	92.16	14,761	89.36	5,275	91.52	1,606	94.58	80,623	91.64
*1/*3A	4,119	6.44	286	1.73	322	5.59	19	1.12	4,746	5.39
*1/*3B	10	0.02	1	0.01	1	0.02	0	0.00	12	0.01
*1/*3C	697	1.09	1,416	8.57	147	2.55	71	4.18	2,331	2.65
*3A/*3A	81	0.13	1	0.01	5	0.09	0	0.00	87	0.10
*3A/*3B	1	0.00	0	0.00	0	0.00	0	0.00	1	0.00
*3A/*3C	23	0.04	15	0.09	2	0.03	0	0.00	40	0.05
*3B/*3C	75	0.12	0	0.00	11	0.19	0	0.00	86	0.10
*3C/*3C	11	0.02	39	0.24	1	0.02	2	0.12	53	0.06

Imputing Drug-Gene Interactions, Summary

	Caucasian AA ((N=63,997)		AA (N=1	6,519)	Hispanic (N=5,764)		Asian (N=1,698)		Total (N=87,978)	
Phenotype	N	%	N	%	N	%	N	%	N	%
Normal	58,980	92.16	14,761	89.36	5,275	91.52	1,606	94.58	80,623	91.64
Intermediate	4,826	7.54	1,703	10.31	470	8.15	90	5.30	7,089	8.06
Low	191	0.30	55	0.33	19	0.33	2	0.12	267	0.30

Imputing Drug-Gene Interactions, Summary – Genotyping, Sanger Seq.

- Genotyping (n=585)
 - Samples validated on Illumina Infinium
 Immunochip and Omni-Quad (v1), which captured
 both rs1800460 and rs1142345
 - Concordance between imputed haplotypes and those determined by genotyping with alternative platforms was 99.8%.
- Sanger (n=60)
 - 85% concordance with imputed haplotypes

Validation, Summary

Genotyping and Sanger Sequencing (N=645)	Wild Type	Heterozygotes	Homozygotes
Wild Type	554	1	1
Heterozygote	0	57	5
Homozygote	0	0	25
Total	554	58	33
Concordance	100%	98.28%	75.76%

Imputing Drug-Gene Interactions, Conclusions

- Accuracy of imputation was sufficiently high to allow discrimination of patients carrying one or two defective alleles from those with a wild type genotype
- 1 in 10 individuals tested from our biobank were found to carry at least one high-risk TPMT allele
- Identification of such carriers is especially important in the pediatric population, as thiopurines are commonly prescribed drugs in children
- Large number of other drug-gene pairs can be used to similarly guide sample selection.

3. Prospective Directions – A Custom-Based Informative Chip

Custom-Chips

Facilitate Cost-Effective ...

- Gene discovery of a comprehensive repertoire of genes through genomic
- Identification of mutations
- Genotype/Phenotype correlation
- Long-term clinical follow up of patients to determine how genetics influences the clinical outcome.

CAG-Led Custom-Chips

- Cardiochip (2008)
 - \$53.14/samples
 - -~53k SNPs
 - -n=220,000
 - ->150 publications generated to date
- Transplant v1 (2013)
 - -<\$65/sample
 - 782k SNPs
- PCGC (2010)
 - \$80/sample; 785k SNPs

Solid Organ Transplant Chip in Use

- Affy chip, solid organ transplant (excellent data quality):
 - 30k well validated LOF variants
 - ~100k exome generated nsSNPs putatively pathogenic by various scores.
 - 450k tagging SNPs in the 1-50% MAF range (imputable to >15 million SNPs from the 1000G and ESP)
 - 20k CNV probes capturing all relevant CNVs ever reported with any potential pathogenicity
 - All GWAS loci of genome wide significance (8k)
 - eSNPs (all relevant eSNPs ever reported in the literature)
 (20k)
 - >780k total variants cost/sample (>\$65)

Future eMERGE Chip

- Affy chip with 780k variants at \$65/sample total cost
- Content:
 - All validated LOF variants known (60k)
 - All exome generated nsSNPs putatively pathogenic by various scores (>100k)
 - 450k tagging SNPs in the rare variant range not currently addressed by existing GWAS (<5% MAF range (imputable to multi-million SNPs from the 1000G and ESP)
 - 20k CNV probes capturing all relevant CNVs ever reported with any potential pathogenicity
 - All GWAS loci of genome wide significance (8-10k)
 - All relevant eSNPs ever reported in the literature) (20k)
 - All PGx variants known