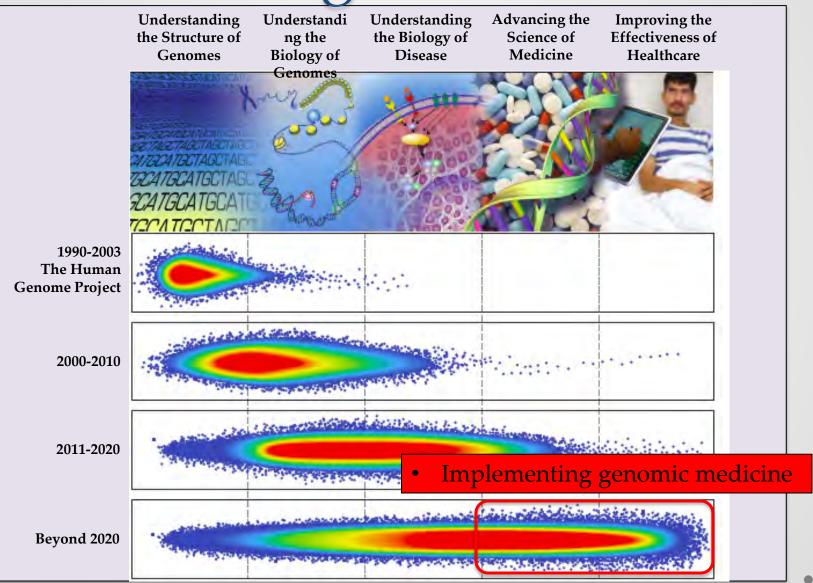

The eMERGE Network

 $\bullet \bullet \bullet$

Rex Chisholm, Steering Committee Chair On Behalf of the eMERGE network January 22, 2014



Domains of genomic research

Green ED, Guyer MS. Nature 2011; 470:20

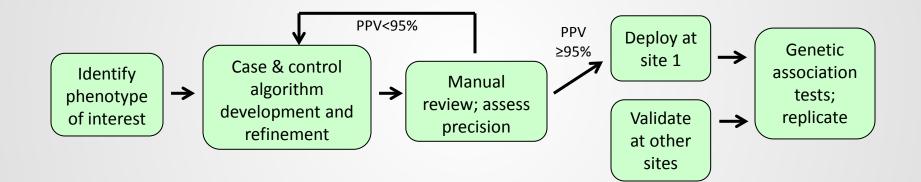
Domains of genomic research

Green ED, Guyer MS. Nature 2011; 470:20

eMERGE Network

Phase I: Sept. 2007 – July 2011 Mayo, Vanderbilt, Group Health Cooperative/Univ. Washington, Marshfield Clinic, Northwestern

Phase II: Aug. 2011 – July 2015 Phase I sites plus Geisinger Health and Mt. Sinai


Pediatric sites (CHOP and BCH/CCH)added 2012

eMERGE I: Discovery

Goals: Test the ability to leverage EMRs and biobanks for genomic research

- Electronic Phenotyping: Develop & validate electronic algorithms for 1° and 2° phenotypes
- Genomics: Conduct association studies of genome-wide data with EMR-derived phenotypes and share data widely through dbGaP
- Assess adequacy of existing consent for genomic technologies & data sharing
- Develop best practices for GWAS in the areas of electronic phenotyping, genomics & analytics, and ELSI topics

Approach to electronic phenotyping

eMERGE-I phenotypes

x	Primary Site # Genotyped		Addl. Data from Network	
Phenotype	Case	Control	Case	Control
Cataract	2642	1322	1386	1360
Dementia	1241	2043	14	-
PAD	1641	1604	1010	8743
QRS	3034	-	1019	-
T2 Diabetes	2706	1496	1101	912

Data Sharing Memorandum of Understanding

- Each site has final authority regarding their data
- How data may be shared
- Privacy and Confidentiality agreements
- Limitations of Use

Phase I Phenotypes

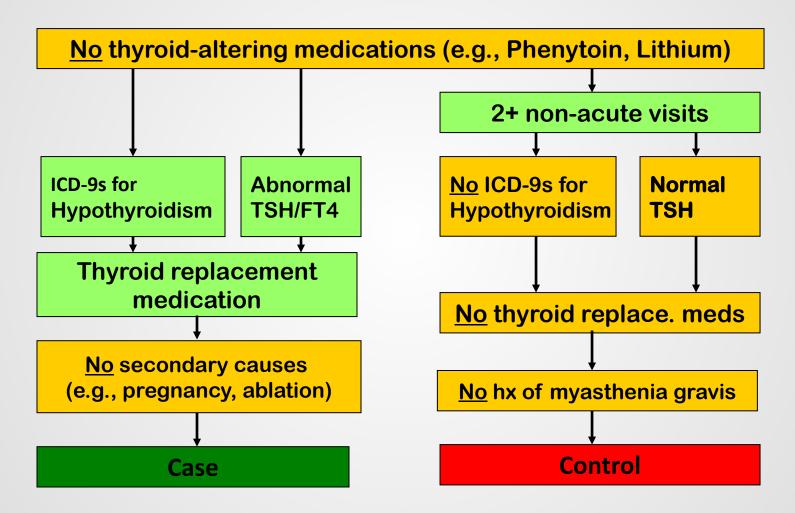
	GHC/UW	Marshfield	Mayo	Northwestern	Vanderbilt
Primary	Primary				
Dementia	Х	Х			Х
Cataract	Х	Х	Х		Х
PAD	Х	Х	Х	Х	Х
Type 2 Diabetes	Х	Х	Х	Х	Х
QRS Duration	Х	Х	Х	Х	Х
Secondary					
WBC	Х	X	Х	Х	Х
Diabetic					
Retinopathy	Х	Х	Х	Х	Х
RBC	Х	X	Х	Х	Х
Lipids	Х	X	Х	Х	Х
Height	Х	X	Х	Х	Х
PheWAS	Х			Х	Х
HDL	Х	X	Х	Х	Х
Network					
Hypothyroidism	Х	Х	Х	Х	Х
Resistant HTN	Х	Х	Х	Х	Х

Primary Phenotype-Gene Associations in eMERGE I

Associations between 19 phenotypes and 38 genes

Disease Phenotype	Gene	
Cardiac Conduction	SCN5A, SCN10A	
Hypothyroidism	FOXE1	
LDL Cholesterol	APOE, TRIB1, LPL, ABCA1	
Platelet Count & Volume	$5~{\rm Chromosomes}$ Associated with PLT & 8 with MPV	
Glaucoma, Primary Open-A Glaucoma, Optic Nerve De	MORE	
Red Blood Cell Traits, Erythroid Differentiation and Cell Cycle Regulation	THRB, PTPLAD1, CDT1	
RBC Traits, Erythrocyte Sedimentation Rate (ESR)	CR1	
RBC Traits, Malaria Resistance	HBB, HBA1/HBA2, G6PD	
RBC Traits, Peripheral Artery Disease (PAD)	SLC17A1, BLS1/MYB, TMPRSS6, HFE	
White Blood Cell Count	DARC, GSDMA, MED24, PSMD3	

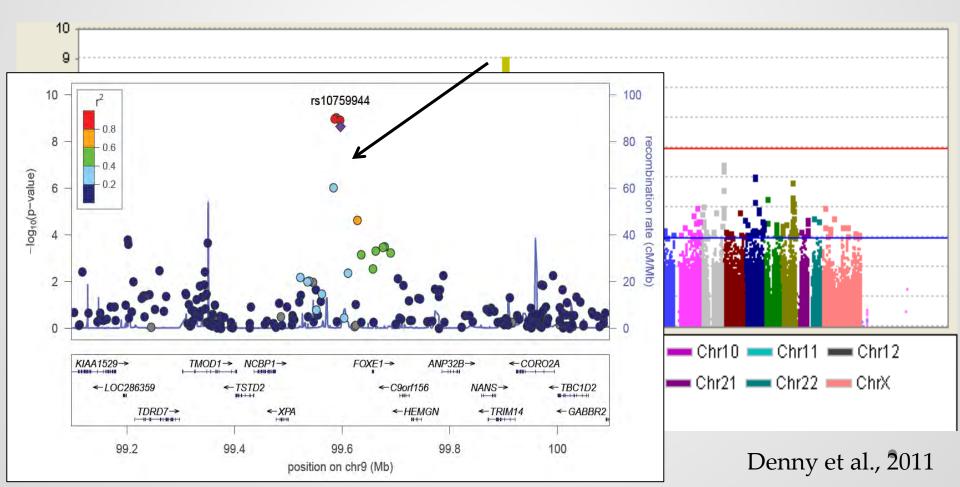
Merged Genotype Dataset


- 17,046 eMERGE samples with GWAS data
- Majority of samples genotyped using 660W
- Samples collected for various studies GH – Dementia Marshfield – Cataracts and HDL-C Mayo – PAD NW – T2D VU – Normal ECGs

Can we use existing dataset for another experiment?

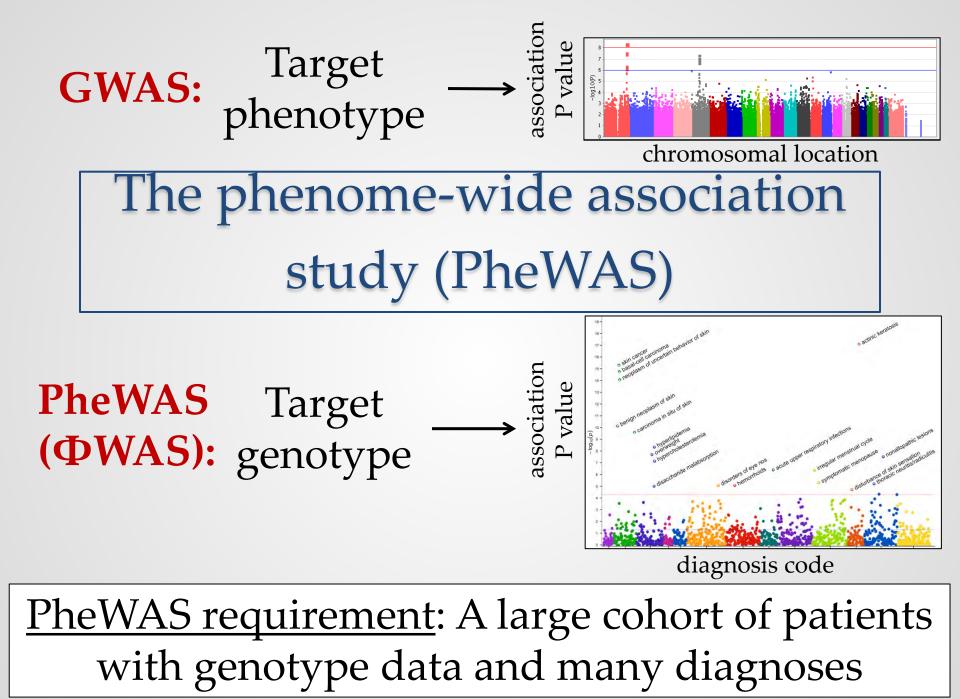
Primary Hypothyroidism

- Most common form is chronic lymphocytic hypothyroidism (Hashimoto's thyroiditis)
- More common in females (~10x)
- Other associated factors
 - age
 - race/ethnicity
 - family history of thyroid disease
- No published* GWAS (as of 07/23/2011)

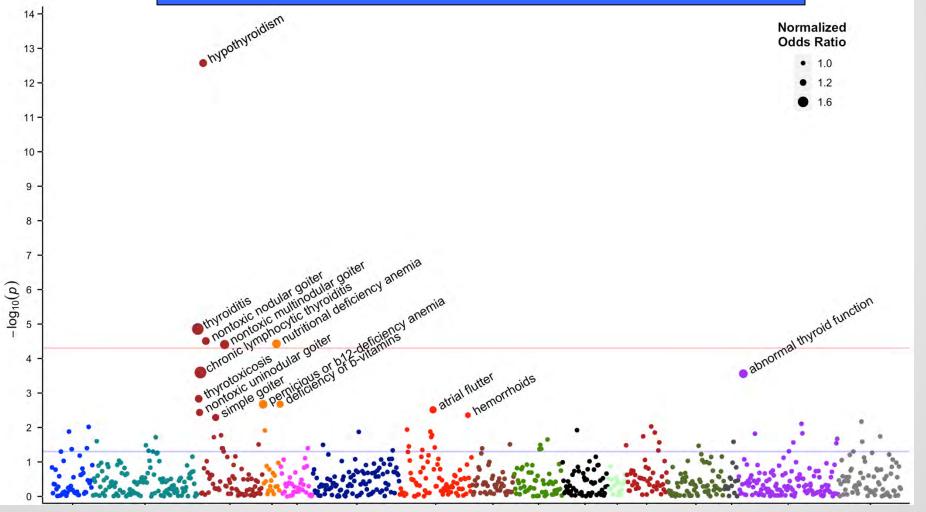

Hypothyroidism Algorithm

Phenotype Algorithm Validation

Site	EMR-based Cases/Controls	Chart Review Cases/Controls	Case PPV (%)	Control PPV (%)
Group Health	397/1,160	50/50	98	100
Marshfield	514/1,187	50/50	91	100
Mayo Clinic	233/1,884	100/100	82	96
Northwestern	92/470	50/50	98	100
Vanderbilt	81/352	50/50	98	100
All sites (weighted)	1,317/5,053		92.4	98.5


An eMERGE-wide phenotype analyzed with no extra genotyping: hypothyroidism European Americans (1,306 cases and 5,013 controls)

FOXE1


- Forkhead box E1 (thyroid transcription factor 2)
- ~3.46kb intronless gene
- Thyroid transcription factor which likely plays a crucial role in thyroid morphogenesis
- Mutations associated with congenital hypothyroidism and cleft palate with thyroid dysgenesis
- The map localization of this gene suggests it may also be a candidate gene for squamous cell epithelioma and hereditary sensory neuropathy type I

From EntrezGene

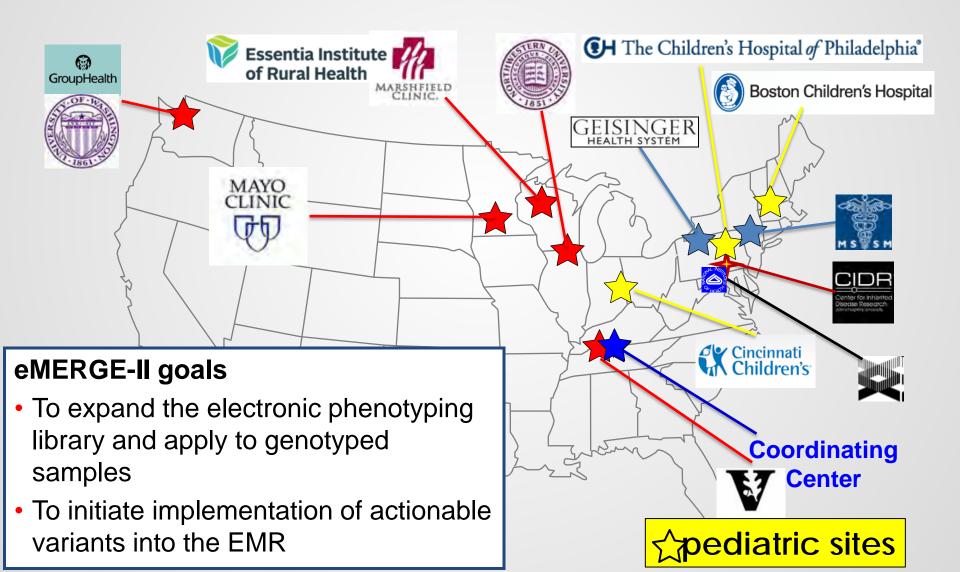
PheWAS for rs965513 (FOXE1)

Analysis of 866 phenotypes in 13,617 European Americans Adjusted for age and sex

Hypothyroidism Conclusions

- "No new genotyping" experiment yields new genetic associations
- Associations overlap with thyroid cancer GWAS
- Associations replicate in external dataset
- FOXE1 likely candidate, may be associated with other thyroid diseases

Discovery to Practice: Integrating Genomics into the EMR


Phase 1

Phase 2

- Use EHR data for genome/phenome associations
- Cross institution phenotypes

- More sites
- Pediatrics
- Faster, better, cheaper EHR-based genomic science
- Integration of genomic information back into EHR and clinical care

eMERGE Network

eMERGE II: Discovery & Implementation

- EHR-based Phenotyping
- Establish new Genotype-Phenotype associations
- Clinical Use:
 - O Defining actionability/clinical utility/validity
 O Integration into EHR/Visualization/Clinical Decision support
- Physician and Patient attitudes/Education
- Consent/Regulatory
- Privacy/Security/CLIA/CAP

eMERGE II: Discovery & Implementation

- EHR-based Phenotyping
- Establish new Genotype-Phenotype associations
- Clinical Use:
 - O Defining actionability/clinical utility/validity
 O Integration into EHR/Visualization/Clinical Decision support
- Physician and Patient attitudes/Education
- Consent/Regulatory
- Privacy/Security/CLIA/CAP

EMR-linked biobanks in eMERGE-II

Site	Participants	(GWAS)- Genotyped Samples
Group Health Seattle	6,381	3,606
Marshfield	20,000	4,693
Mayo	19,000	6,934
Northwestern	11,000	4,987
Vanderbilt	158,514	27,173
Geisinger	22,000	4,191
Mt. Sinai	22,000	6,290
СНОР	60,000	45,000
Cincinnati/Boston	10,000	5,360
TOTAL	328,895	108,234

eMERGE Phenotyping: Sharable, High-Throughput

- Methods
 - o 44 phenotypes (complete or in development)
 o Sharable formats KNIME, QDM
 o Machine Learning algorithms
 o Portable Methods

• Tools

- PheKB with data standardization & validation tools
- o eMERGE RC
- o PheWAS
- o Downloadable NLP Tools cTAKES, MedEx

Phase II Phenotyping

Phenotyping Algorithm Development

Phenotype	Lead Site	Secondary Site	Status
Clostridium difficile	GroupHealth	Vanderbilt	Complete
Abdominal aortic aneurysm	Geisinger	Мауо	Complete
Venous Thromboembolism	Мауо	Vanderbilt	Complete
Ocular Hypertension	MC/EIRH/PSU	Geisinger	Complete
Diverticulosis	Northwestern	Vanderbilt	Complete
Glaucoma	MC/EIRH/PSU	Geisinger	Complete
Herpes Zoster	GroupHealth	Vanderbilt	Complete
ACE-Inhibitor Induced Cough	Vanderbilt	Northwestern	Complete
Cardio Respiratory Fitness	Мауо	Geisinger	Complete
Extreme Obesity	Geisinger	MC/EIRH/PSU	Complete
Asthma	СНОР	MC/EIRH/PSU	Complete
Child Obesity	CCHMC/BCH	СНОР	Complete
Drug Induced Liver Injury	Mt. Sinai/Columbia	Мауо	Complete
Heart Failure	Мауо	GroupHealth	In process (exp. Jan. 2014)
Colon Polyps	Northwestern	MC/EIRH/PSU	In process (exp. Jan. 2014)
Autism	ССНМС	ВСН	In process (exp. Jan. 2014)
Statins for MACE	Vanderbilt	MC/EIRH/PSU	In process (exp. Jan. 2014)
Age-related Macular Degeneration	MC/EIRH/PSU	Northwestern	In process (exp. Jan. 2014)
Atopic Dermatitis	СНОР	MC/EIRH/PSU	In process (exp. Jan. 2014)
Remission of Diabetes after ROUX-EN-Y	СНОР	MC/EIRH/PSU	In process (exp. Feb. 2014)
CAAD as Quantitative Measure	Geisinger	Northwestern	In process (exp. Feb. 2014)

Upcoming Phenotypes: Upper GI/PUD, GERD, Appendicitis, Epilepsy, Lipids, Pulmonary HTN, Diabetic Hypertensive CKD, Rapid Renal Decline in Diabetic HTN Nephropathy, caMRSA, ADHD

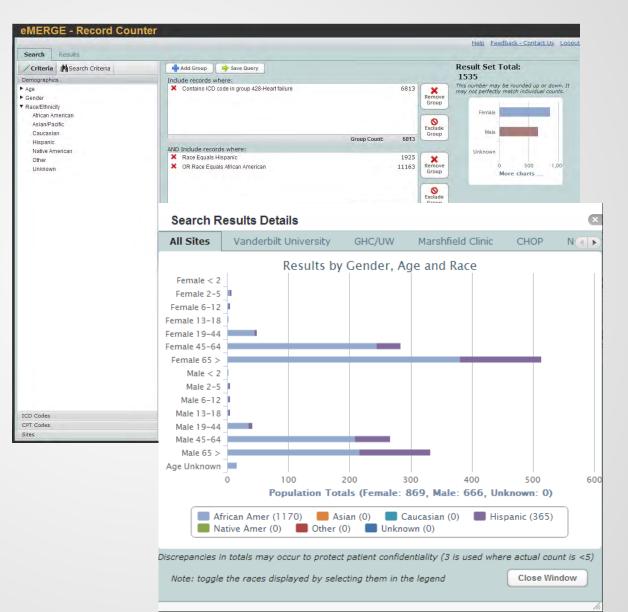
Standard Pediatric Measures

Milestones:

- o Height, Weight, BP, Heart Rate
- Head Circumference (Brain Growth)
- Gross/Fine Motor Function (Coordination, Locomotion)
- Cognitive Development (Language, Reasoning)
- Communication (Receptive and Expressive)
- Sensory (Vision and Auditory)
- Social and Emotional Development
- o Self Care (Sleep, Activity Level)

- ~Standard Time Points (Well-Child
 Visits):
 - 1 month
 - 3 months
 - 6 months
 - 1 year
 - 2 years
 - 3 years
 - · 4 years
 - 5 years

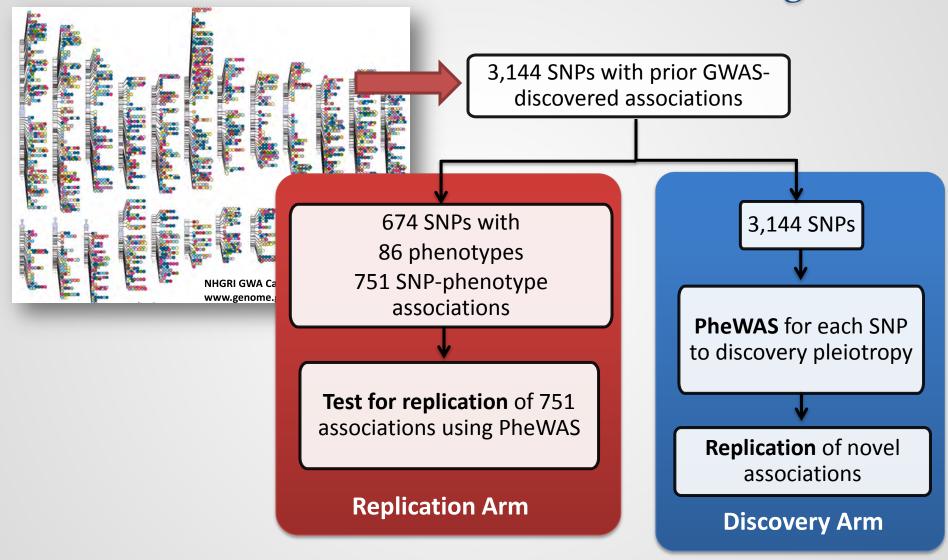
eMERGE Record Counter

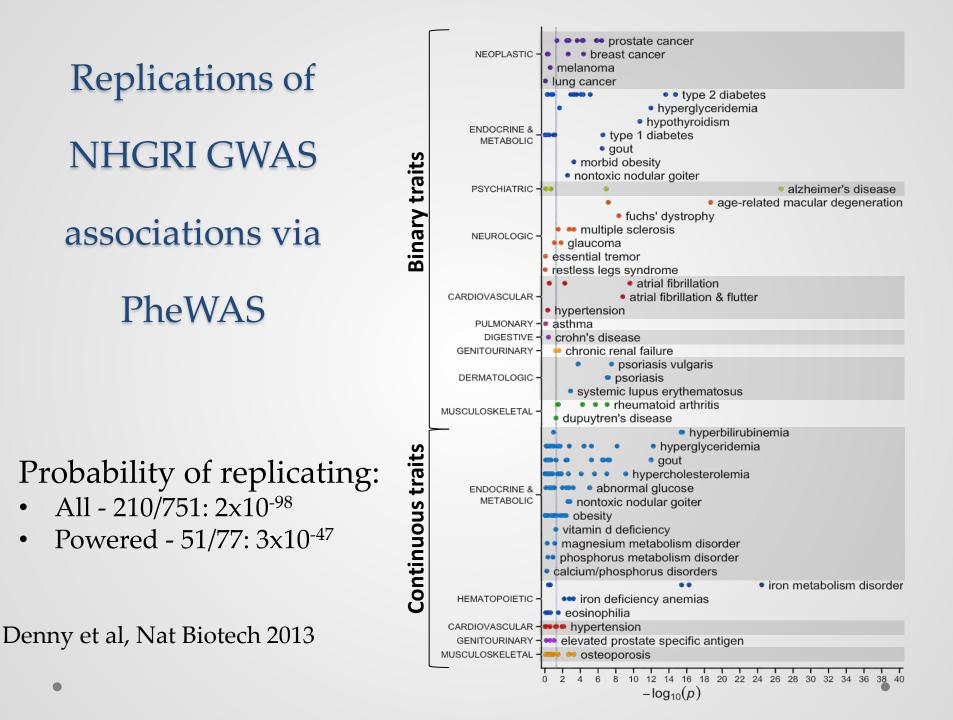

The Record Counter is a webbased tool that provides exploratory data figures to the members of the eMERGE community for research planning purposes and feasibility assessment.

What is returned?

Data counts stratified by sex, ancestry, age and site.

What data is available? Over **52,000 records are**


available in the Record Counter. The data incorporated in the eRC includes both the eMERGE 1 merged set data and eMERGE 2 data from Mt. Sinai, Essentia/Marshfield/PSU, Vanderbilt, Group Health/UW, Mayo Clinic, Northwestern, Geisinger, Boston Children's, Cincinnati Children's, and CHOP.


PheKB.org: a knowledgebase for discovering phenotypes

- Public Side of the Website
 - Final phenotypes algorithms and implementation results
- Private Side of the Website
 - Ability to create phenotype workspaces and collaborate on development, testing, and validation on algorithms
 - Version history
 - Access controls
 - Only viewable by authors
 - Shared with a collaborative groups(s)
 - Public ("Final" algorithms only)
 - Comment on Phenotypes shared with you
 - Receive alerts on Phenotypes you are following

PheWAS of "all" NHGRI GWAS Catalog SNPs

Denny et al, Nat Biotech 2013

eMERGE II: Discovery & Implementation

- EHR-based Phenotyping
- Establish new Genotype-Phenotype associations
- Clinical Use:
 - o Defining actionability/clinical utility/validity
 - Integration into EHR/Visualization/Clinical Decision support
- Physician and Patient attitudes/Education
- Consent/Regulatory
- Privacy/Security/CLIA/CAP

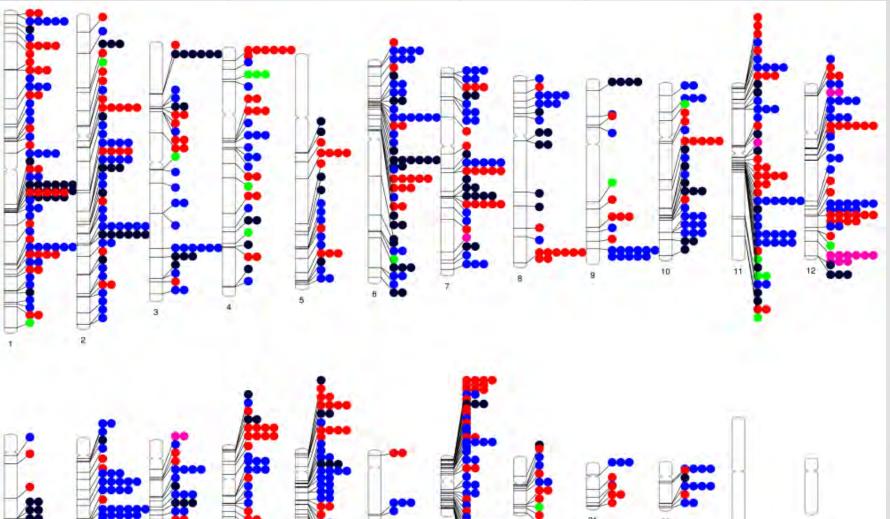
Genomics: Creation of the eMERGE Dataset

- Creation of **QC Pipeline** High throughput and high quality
- Different genotyping platforms required a solution for a merged dataset: Imputation
- eMERGE-I
 - o included 5 sites
 - o 2 plattforms: Illumina 660 & 1M

• eMERGE-II

- o Included 7 adult sites, 3 pediatric
- Illumina 1M, Illumina 660W, Affymetrix 6.0, Illumina HumanOmni Express, Illumina Metabochip, ADME Illumina, Illumina Immunochip, Illumina Metabochip, Illumina OMNI 1, Illumina OMNI 5, etc.

BEAGLE Imputed Data (Adult Sites only)# Genotyped
Samples# BEAGLE
Imputed SNPsMerged eMERGE-I 1M2,634Merged eMERGE-I 66016,029Adult sites (unmerged)19,625Adult Site Total38,28815,212,466


Impute2 Imputed Da	ata (Adult and Pediatric)
	# Genotyped Samples
Merged eMERGE-I 1M	2,634
Merged eMERGE-I 660	16,029
Geisinger	3,111
Group Health	731
Marshfield	500
Mayo	3121
Mt. Sinai	6,290
NU	2,951
Vanderbilt	3,461
BCH	1,038
CCHMC	4,322
CHOP	6,850
Total - All Impute2 Imputed Samples	51,038

Loss of Function (Null) Variants Project

Hypothesis: Use large eMERGE dataset to identify multiple rare, null variants and look for correlation with clinical traits

- Use bioinformatics approach to predict null variants
- Explore genotyped and imputed datasets for the occurrence of null variants
- Run PheWAS analysis on high impact variants to look for association with clinical characteristics

Phenogram of High Impact Variants

eMERGE II: Discovery & Implementation

- EHR-based Phenotyping
- Establish new Genotype-Phenotype associations
- Clinical Use:
 - Defining actionability/clinical utility/validity
 - Integration into EHR/Visualization/Clinical Decision support
- Physician and Patient attitudes/Education
- Consent/Regulatory
- Privacy/Security/CLIA/CAP

eMERGE Site-Specific Genomic Medicine

Implementation Pilots

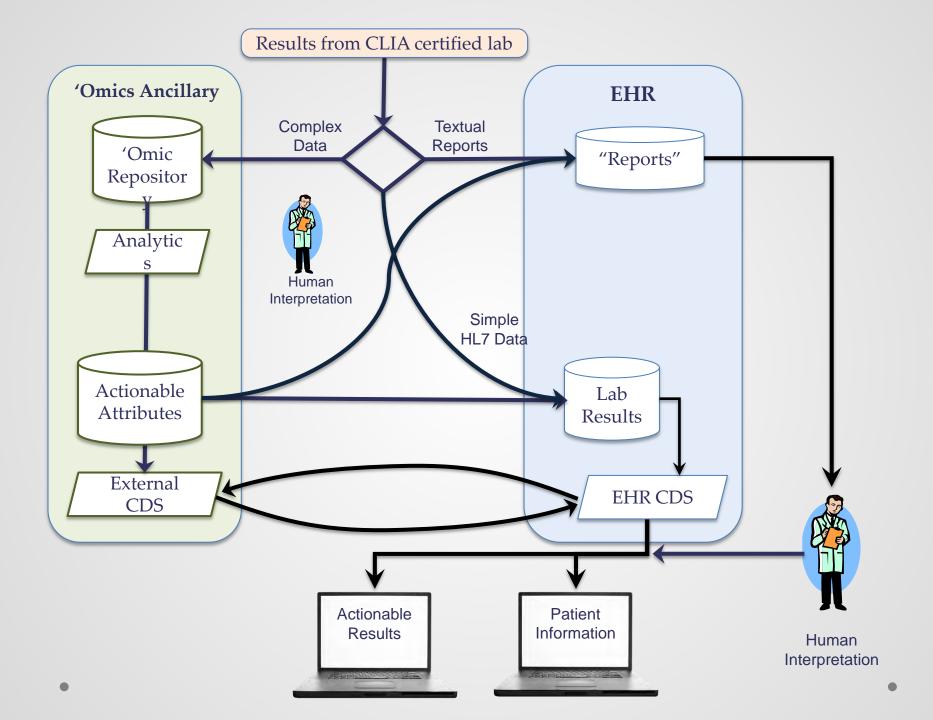
Site	Goal
ССНМС	CYP2D6 variants and post-operative opioids
СНОР	TPMT and LOF variants impacting adverse response to thiopurine drugs
Geisinger	IL28B variants and chronic hepatitis C treatment; WGS for undiagnosed diseases
Marshfield	CFH and risk of age-related macular degeneration
Mayo	RCT of 42 SNP-genomic risk score for CHD vs Framingham score alone for attitudes, behaviors
Mount Sinai	RCT of APOL1 genotype vs clinical risk factors for hypertensive nephropathy prevention, management
Northwestern	Effect of return of HFE and FVL risk variants on physician and patient attitudes, behaviors
Vanderbilt	Expanded PGx testing

Network-wide return of results project: hemochromatosis

Site	C282Y/C282Y	C828Y/H63D	H63D/H63D	Sum
Geisinger	12	67	110	189
GHC/Seattle	17	60	72	149
Marshfield	15	52	87	154
Mayo	44	179	206	4
Mt. Sinai	1	12	29	42
Northwestern	19	64	81	164
Vanderbilt	39	152	141	332
Total	147	586	726	1459

- Do these patients carry the clinical diagnosis?
- Do they have clinical phenotypes?

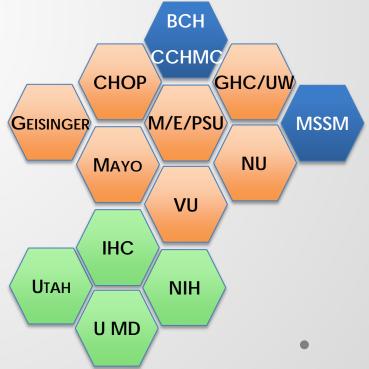
Returning Results: Hemochromatosis penetrance


- Most common genetic disorder in Caucasians
 - 1:220 individuals
 - 1/9 risk of allele carrier
 - Common alleles C282Y and H63D
- Iron over-absorption leads to end organ damage, easily screened for and treated
- Low penetrance
 - Estimated as 8% in males and <2% in females
 - Impact on screening and treatment
- Plan: Find penetrance for relevant phenotypes in eMERGE (charts)

eMERGE II: Discovery & Implementation

- EHR-based Phenotyping
- Establish new Genotype-Phenotype associations
- Clinical Use:
 - Defining actionability/clinical utility/validity
 Integration into EHR/Visualization/Clinical Decision support
- Physician and Patient attitudes/Education
- Consent/Regulatory
- Privacy/Security/CLIA/CAP

EHR Infrastructure


Institution	EHR Platform for Genomic Integration		
Group Health	Epic Ambulatory		
Mayo	GE Centricity + Cerner		
Marshfield	Internally Developed		
Northwestern	Epic + Data Warehouse		
Vanderbilt	Internally Developed		
Geisinger	Epic + Data Warehouse		
Mt. Sinai	Epic		
ССНМС	TBD	Variation in infrastructure and	
BCH	TBD	project goals makes common CDS development impractical. areht Engaged, purposeful sharing of information and best practices.	
СНОР	EPIC + Data Wareh		

eMERGE Infobutton Project

Develop a new information resource based on the HL7 Infobutton standard

- 1. Required by Meaningful Use Stage 2
- 2. Multiple sites contribute content, all sites can access.
- Representation from many eMERGE sites
 - Crosses EHRI and CERC workgroups
- External collaborators
 - University of Utah Dr. Guilherme del Fiol
 - Intermountain Healthcare Dr. Nathan Hulse
 - NIH Clinical Center Dr. Jim Cimino

eMERGE Infobutton Project

Implement infobuttons within EHRs at eMERGE institutions

- Identify supporting platforms
- Develop systems that don't exist, or contribute features to existing OSS projects
- Assist with implementation and configuration
- Evaluate usage

About These Results

Many things can explain why a person has a medical condition, or why different people respond to the same medication in different ways. Genetic testing, which looks for changes (also called polymorphisms, or mutations) in your DNA, can help.

It's important to know that being at risk for a condition doesn't mean you will necessarily get it. The results of these tests should be used with other pieces of evidence collected by your doctor to make medical decisions.

WARFARIN DOS Results	What Does this Mean?
Results	Nam nisi felis, pulvinag-eget nibh in, placerat aliquam diam. Integer placerat dolor elit, at bibendum
CYP2C(*2: CC	neque luctus imperdiat. Phasellus at blandit justo, egestas vehicula sem. Praesent vulputate iaculi risus, vitae feugiat leo sollicitudin eget. <i>In imperdiet velit non sapien convallis placera</i> . <u>Leam</u>
Tested On 8/19/20.	13
SIMVASTATIN M	IETABOLISM 🔞
Results	What Does this Mean?
Normal Activity	
(Predicted) Tested On 8/19/20.	preclude you from any other potential adverse events from taking simvastatin. [Learn more] 13
CLOPIDOGREL I	METABOLISM ()
Results	What Does this Mean?
Poor Metabolizer (Predicted)	You had a genetic test looking for genetic differences to help predict how your body might respond to using the drug clopidogrel (Plavix®). Your test result showed that clopidogrel may not work as well for you as for most people. [Learn more]
Tested On 8/19/20.	

eMERGE II: Discovery & Implementation

- EHR-based Phenotyping
- Establish new Genotype-Phenotype associations
- Clinical Use:
 - O Defining actionability/clinical utility/validity
 O Integration into EHR/Visualization/Clinical Decision support
- Physician and Patient attitudes/Education
- Consent/Regulatory
- Privacy/Security/CLIA/CAP

Challenges in Research Ethics and Policy

- Consent
 - o Biobanking Genomics in the EMR
- Data Sharing

 Biobank data
 Clinical (genomic) data
- Community Engagement Stakeholder Engagement, Patient & Physician Education

Collaboration: Interactions with CSER

- Combined meeting
- Templated reporting of WGS and WES results
- PGx IFs in the ACMG list
- PGx reporting in CSER
- Contrast MD and patient responses to WES/WGS vs PGx ROR
- CDS

eMERGE II: Discovery & Implementation

- EHR-based Phenotyping
- Establish new Genotype-Phenotype associations
- Clinical Use:
 - o Defining actionability/clinical utility/validity
 o Integration into EHR/Visualization/Clinical Decision support
- Physician and Patient attitudes/Education
- Consent/Regulatory
- Privacy/Security/CLIA/CAP

Tools: Model Consent Language and MyResults.org

MyResults.org is a centralized repository of patient education materials as related to eMERGE studies.

RETURN OF RESULTS

Individual Results

P

G

You should not expect to get individual results from research done through the Biobank. Researchers must study samples and information from many people over many years before they can know if the results have meaning. We will not give the results to your doctor. We will not put them in your medical record.

There is a small chance that researchers could discover something that might be very important to your health or medical care right now. If this happens, we will contact you to see if you want to learn more.

assive Sentences	0%	
eading Ease (ideally 60-70; higher is better)	69.6	
irade Level (ideally 8 or below)	7.3	

Human Microbiome Project (HMP) Core Microbiome Sampling: Informed Consent to Participate in a
Research Study
 Konstructure (Washington University in St. Louis)

Model Consent Language

The following model consent language document represents the compiled work of eMERGE investigators and consultants on consent language for the collection and storage of human biospecimens and data for future research, particularly those collections that have an electronic medical records component. Portions of the language may also be useful for other genetic and genomic research, such as genome-wide association studies or candidate gene studies.

The Electronic Medical Records and Genomics (eMERGE) Network Consent & Community Consultation
Workgroup Informed Consent Task Force: Model Consent Language

The 2009 Model Consent Language document is hosted on NHGRI's Informed Consent website and represents the Network's compiled work on consent language for the collection and storage of human biospecimens and data for future.

Patient survey: biobanking consent issues

Questions:

- Do participants view specific consent to be a requirement for sharing biosamples and data for future research?
- Which biospecimen and biobanking-related research practices are likely to have the greatest impact on willingness to participate under broad consent?

Plan

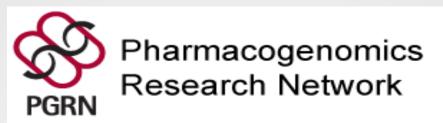
• Survey 100,000 participants and patients across the eMERGE institutions to elicit a wide cross-section of patient perspectives.

Outcome

• Recommendations to inform future policy for the ethical conduct of human subject research

eMERGE II: Discovery & Implementation

- EHR-based Phenotyping
- Establish new Genotype-Phenotype associations
- Clinical Use:
 - O Defining actionability/clinical utility/validity
 O Integration into EHR/Visualization/Clinical Decision support
- Physician and Patient attitudes/Education
- Consent/Regulatory
- Privacy/Security/CLIA/CAP


Natural Language Deidentification for Local Sites

- Many eMERGE sites using free text from EMRs for phenoytyping
- Freely-available open source software (MIST) developed as partnership between eMERGE members and MITRE
- Machine learning strategy: Annotate some training data and let the system learn a model of identifiers

File: SamplePathFinDxFAKE.txt (task HIPAA Deidentification)				
Workflow: Hand annotation 👻 Replacer: Select replacer 👻				
Status: clean > zone > hand tag > nominate > transform < > Reload				
Document		Save		
[DailyHL]7_SURG_HISDX_DIAGNOSIS]				
PALATAL LESION, EXCISION (ACME, G2	0 400453			
1. ADENOCARCINOMA. OF MINOR SALIN	ARY GLAND ORIGIN			
TO HIGH				
2. TUMOR SIZE: AT LEAST 1.0 X 0.6 CM	GRADE, NOT OTHERWISE SPECIFIED (SEE COMMENT).			
3. CAPILLARY LYMPHATIC SPACE INVASION: NOT IDENTIFIED.				
	4. PERINEURAL INVASION: PRESENT.			
D. RESECTION MARGINS, FOCAL FRES	5. RESECTION MARGINS: FOCAL PRESENT AT THE DEEP MARGIN			
MOUTH LESION, RE-EXCISION PREVIOUS BIOPSY SITE (ACME, G22-12346):				
1. NO RESIDUAL ADENOCARCINOMA ID 2. ALL MARGINS FREE OF ADENOCARC				
3. PREVIOUS BIOPSY SITE CHANGES				
COMMENT: The initial palatal incisional bio	psy from March of 202	22 (Good		
Health 22-54321 c) was sent to Dr. John D	Add AGE (A)	ist at		
Acme General Hospital who has special ex In his consultation, Dr. Doe acknowledges	Add DATE (D)	k pathology. umor		
to adenoid cystic carcinoma, solid variant,	Add <mark>EMAIL</mark> (E) Add <mark>HOSPITAL</mark> (H)	nor		
is best classified as above. The resection	Add DNUM (J)	ural		
invasion and a positive deep margin, and a clear margins with no evidence of residual	Add INITIALS (C) Add IPADDRESS (I)	re		
	Add LOCATION (L)			
Please see outside surgical pathology repo immunohistochemical profile.	Add NAME (N) Add OTHER (O)			
	Add <mark>PHONE</mark> (P)			
PATHOLOGIST: Doe MD, Jane E	Add <mark>SSN</mark> (S) Add <mark>URL</mark> (U)	/01/2022		
	Repeat OTHER (=)			
Hand annotation available (swipe or left-click)	Cancel (<esc>)</esc>			

Aberdeen et. al., International Journal of Medical Informatics, 2010

eMERGE-PGRN Partnership

PGx capabilities:

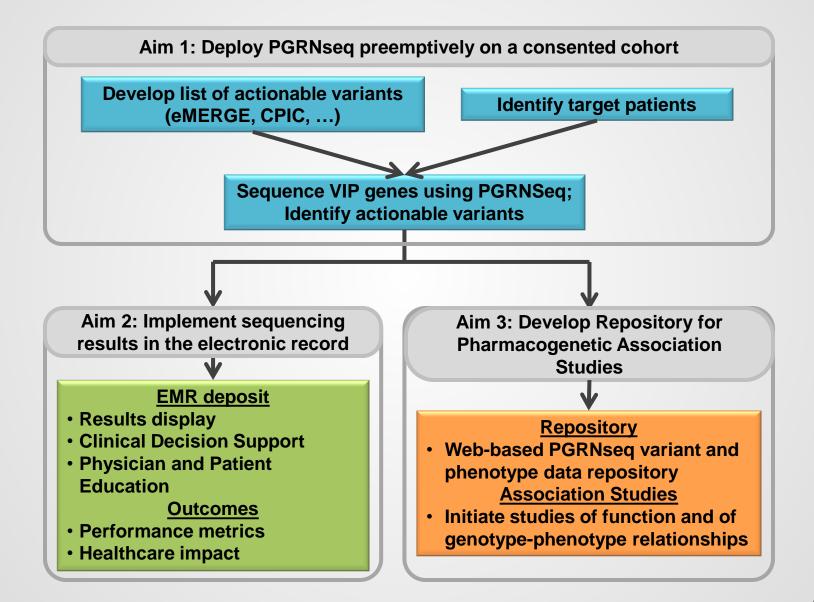
- Resequencing platform for 84 Very Important Pharmacogenes
- Drug-gene guidelines
- CLIA & QC standards

EMR-informatics capabilities

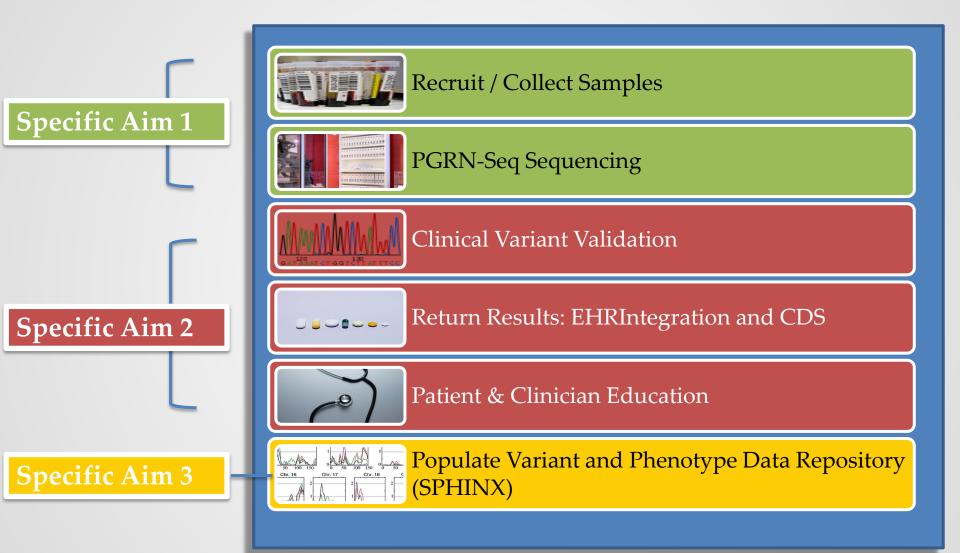
- Privacy
- Electronic phenotyping
- Large populations
- Decision support

eMERGE Network

electronic medical records & genomics


eMERGE PGx Project

- Deploy VIP platform developed by PGRN investigators
- Apply to participants enriched for encountering drugs for which there is a CPIC guideline
- Return appropriate genotype results through appropriate decision support tools
- Archive novel variants for further study


PGx candidate drug-gene pairs

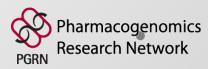
Gene	Drug	Comment
СҮР2С19	clopidogrel	Best evidence in patients with coronary stents
CYP2C9 VKORC1 CYP4F2	Warfarin	Algorithms to predict starting dose available. Vary by ancestry
HLA B*5701	Abacavir	
HLA B*1502	carbamazepine	Higher frequency variant in Asian subjects
SLCO1B1	Simvastatin	Especially at higher dosages or with interacting drugs
TPMT	6-MP, azathioprine	
CYP2D6	Codeine	PM status predicts non-response
CYP2D6	some SSRIs	PM status predicts intolerance of effective dosages.

eMERGE PGx – Overview by Aim

eMERGE PGx - Overview by Project

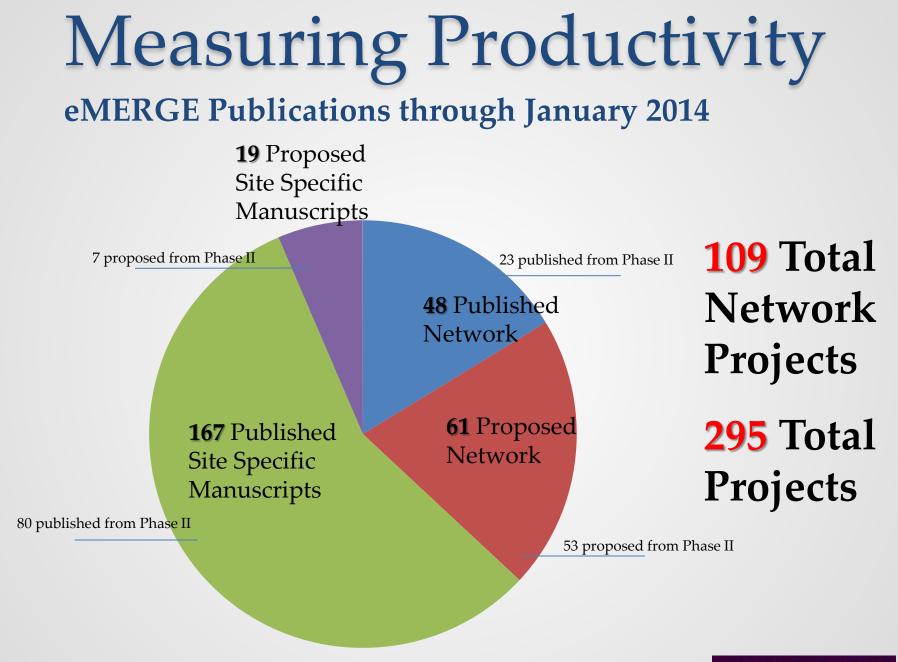
Outcomes

Process outcomes

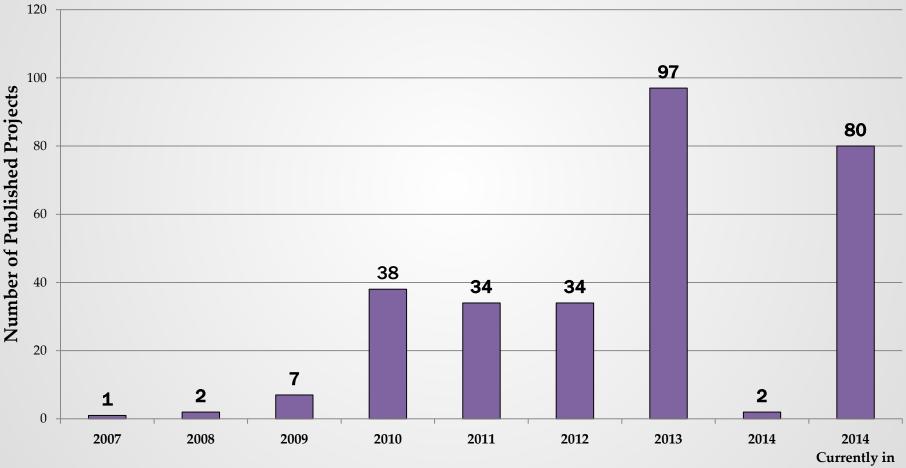

- Recruitment
- PGRN-Seq Sequencing metrics
- Comparison to Validation Genotyping
- EMR Integration and Clinical decision support
- Returned Results
- Education: clinicians, patients

Healthcare outcomes

- Statins: Myopathy, Drug Switch
- Clopidogrel: Stent or ACS event? Within 30 days?
- Warfarin: Time to steady state? Time out of range? Bleeding? Thrombosis?
- Thiopurines: Blood counts, (disease outcome), ...
- Return of results project: 6 ACMG "actionable" genes

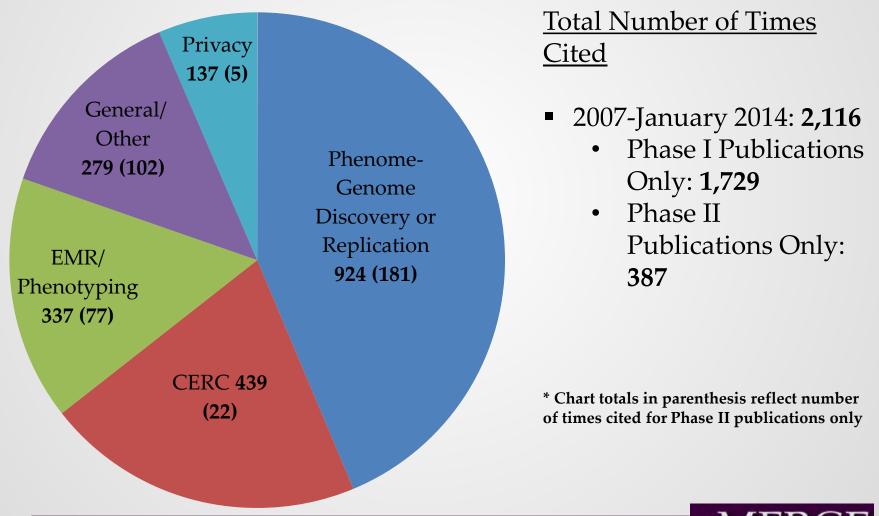


PGRNSeq-Incidental Findings (IFs)


Gene Symbol	Gene Name	Phenotype
CACNA1S	Calcium channel, voltage- dependent, L type, alpha 1S subunit	malignant hyperthermia
KCNH2	Potassium voltage-gated channel, subfamily H (eag-related), member 2	long QT arrhythmia
LDLR	Low density lipoprotein receptor	hyperlipidemia
RYR1	Ryanodine receptor 1 (skeletal)	malignant hyperthermia
RYR2	Ryanodine receptor 2 (cardiac)	catecholaminergic polymorphic ventricular tachycardia
SCN5A	Sodium channel, voltage-gated, type V, alpha subunit	long QT arrhythmia

eMERGE

eMERGE Projects Published by Year through


January 2014

Development

Citation Analysis

eMERGE Publications: Number of Times Cited through January 2014

Genetics in**Medicine**

Official Journal of the American College of Medical Genetics and Genomics

Volume 15, Issue 10 (October 2013)

American College of Medical Genetics and Genomics

Integration of genomics into the electronic health record: mapping terra incognita

Joseph M. Kannry, MD¹ and Marc S. Williams, MD²

eMERGE Tools

	Released Tools Available to Public		
ing	eleMAP (Mayo/CC)		
113 users representing 70 institutions			
Ö	PheKB (CC)		
Phenotyping	233 users representing; 24 institutions; 2,936 unique visitors to the website since release		
	PennCNV (CHOP)		
Genotyping	Implements a hidden Markov model that integrates multiple sources of information to infer CNV calls for individual genotyped samples, Widely-used: 630		
	Citations to date		
	NGS data Analysis Pipeline (CHOP)		
	Over 1,700 subjects whole exome sequencing with over 100 different rare medical disorders, resolved over 30 rare disorders; sequencing an average of 50		
	exomes per week at 70x coverage, with an average turn-around time of four to six weeks from sample-processing to variant identification		
	Biofilter, BioBin (Penn State/ Marshfield)		
e e	Provides methods for prioritizing and analyzing variants singly or in groups, over 50 downloads since June, 2013		
	PLATO, ATHENA (Penn State/ Marshfield)		
	Provides platforms for QC and integrating multiple methods of analysis, over 50 downloads since June, 2013		
	Synthesis-View PheWas-View, Phenogram (Penn State/ Marshfield)		
	Provides visualization tools for genome and phenome-wide data, over 900 unique visitors		
Consent	eMERGE Model Consent Language (eMERGE Network)		
ons	Freely available on NIH website		
Ŭ			
	ANNOVAR (CHOP)		
CDS	Annotates genetic variants detected from genomes that can shortlist SNVs and insertions/deletions, examine and report functional consequence, infer cytogenetic bands, find variants in conserved regions, and identify variants from the 1000 Genomes project and dbSNP, Widely used: 513 citations to date		
15	MyResearch, integration between Registrar and MyChart (NU)		
	502 patients registered as of end of August		
NLP	cTAKES (Mayo/Boston Children's) 66 subscribers to User listserv, 75 subscribers to developers listserv, 207 unique hits to download cTAKES in last 30 days		
Ľ	oo subscribers to oser listserv, 75 subscribers to developers listserv, 207 unique filts to download cTARES IN fast 30 days		

eMERGE tools

	In Development	Beta Testing	Early (Limited) Release
Phenotyping	Phenotype Dictionary and File Validation Tool (eMERGE Network)	PheWAS R Package (VU) Web-based Ophthalmology Data Collection (Marshfield/ESS/PSU) Evaluation in progress at one institution	Phewas 1.0 (VU) 3944 downloads from website
Genotyping			eRecordCounter (CC) Released to all eMERGE participants ParseCNV (CHOP) Takes CNV calls as input & creates SNP based statistics for CNV occurrence in cases & controls then calls CNVRs based on neighboring SNPs of similar significance; One citation, released Mar, 2013 Genome-wide genotype quality control pipeline (CC) publish manuscript
Privacy	DARRT (VU)	MIST, with HIPS implementation (GHC/VU) Testing at 2 sites with MITRE	
Consent			Computer Based Training Consent (Marshfield/ESS/PSU) enrolled 70 participants currently active at one site
CDS	Clinical Knowledge Manager (NU) Ancillary Genomics System (AGS) (NU)		
NLP	cTakes Machine Learning Patient Vectors (cMPV) (CCHMC/BCH)		Medex (VU) Actively used by 6 institutions
Clinical Integration		Clinical Utility of Pharmacogenetic Research Opioid CYP2D6 Results: Physician Survey (CCHMC)	Research Opioid CYP2D6 Panel Templates (CCHMC) Early version shared with PGx workgroup Research Pharmacogenetics Results & Incidental Findings Parent Survey adapted from the National Pharmacogenetics Survey(CCHMC/BCH) Using for data collection; Shared with eMERGE ROR & CERC groups

Conclusions

- Biobanks linked to EHR have found new genomic associations with disease and therapeutic outcomes
- eMERGE has demonstrated the efficiency of having genotyped, EHR linked samples for discovery
- EHR Phenotyping can be applied across varied EHRs
- eMERGE developed tools are widely used for both discovery and implementation
- PheWAS approach validated

Conclusions

- eMERGE has pioneered best practices for data sharing, privacy, consent standards and community engagement
- eMERGE PGx and Genomic Medicine pilot projects are at the vanguard of implementation
- eMERGE has enabled a 100K person assessment that will inform best practices for human subjects research