VA MVP PHENOMIC SCIENCE #### **OVERVIEW & EXAMPLES** October 19, 2017 Michael Gaziano, MD MPH Chris O'Donnell, MD Kelly Cho, PhD, MPH David Gagnon, MD, MPH, PhD Katherine Liao, MD Jackie Honerlaw, RN, MPH Tianxi Cai, ScD # Million Veteran Program (MVP) - Enroll up to one million users of the VHA into an observational mega-cohort - Collect health and lifestyle information - Blood collection for storage in biorepository - Access to electronic medical record - Ability to recontact participants ## **MVP** Enrollment Recruitment # **MVP Milestones** | Invitation mailings sent | Over 4 Million | |---|--| | Consented Veterans | 610,000 | | Completed Baseline Surveys | 675,000 | | Genotyped, Sequenced | GT: over 500K; WGS 2K-> 45K; WES 20K | | Other omics | Metabalomic, proteomic, microbiomic pilots | | Funded Science | 3 alpha, 5 beta, 7 gamma test projects, 3 DOE, 2 BD-STEP | | Scientist, analysts on the system | 80-100 | | Abstracts presented, submitted, preparation | 7, 50, 20 | | Manuscripts in prep | 12 | ## **Axiom MVP Biobank Array** 11/ 7/1 5 # **System Architecture** ## **MVP Data Universe** # **Veterans Health Administration (VHA)** The Largest Integrated Healthcare Network in the Country #### VHA Points of Care (1,748) - Integrated Healthcare Networks: 21 - Major Medical Centers: 152 - Outpatient Clinics: 990 - Vet Centers: 370Domicillaries: 102 - Community Living Centers: 134 #### **Patient Population** - Enrollees: 8.8M - Active Patients: 6M - All Time Patients: 22M - FY15 Outpatient Visits: 84M - FY15 Inpatient Admissions: 703K # **VA Analytic Ecosystem** Common Data ♦ Common Infrastructure ♦ Common Tools ♦ Common Security · Hadoop Cluster # **Data Examples** | Patients: 22 M | | | | | | | | | |---------------------|----------------------|---------------------|-------------------|--|--|--|--|--| | Lab Results 7.7B | Clinical Orders 4.5B | Immunizations 71 M | Appointments 1.4B | | | | | | | Pharmacy Fills 2.2B | Clinical Notes 3.2B | Health Factors 2.2B | Encounters 2.4 B | | | | | | | Radiology Proc | Vital Signs 3.3B | Consults 315 M | Admissions 17 M | | | | | | | Surgeries 14 M | Oncology
1.3 M | | | | | | | | **Domains: 15/68** #### **VA Data Sources** - Corporate Data Warehouse Databases - National Patient Care Databases - Vital Status - Decision Support System - National Data Extract - Beneficiary Identification Records Locator (BIRLS) death file - New England VISN-1 Pharmacy files - Outpatient Clinic File (OPC) - Patient Treatment File (PTF) - Inpatient and Outpatient Hospitalizations - Clinic Inpatient and Outpatient Visits - Diagnosis (ICD-9) codes - Procedure (CPT) codes - Pharmacy data and laboratory data - Pharmacy Benefit Management (PBM) system database - OEF/OIF and OND Roster - VA Clinical Assessment Reporting and Tracking (CART) - Veterans Affairs Surgical Quality Improvement Program (VASQIP) - Veterans Affairs Central Cancer Registry (VACCR) # **General Phenotyping Approach** More and more data is becoming available for research: is it a blessing or a curse? - Opportunities and challenges - Are there appropriate tools and resources to analyze, manage and handle these data? - Are we optimally synthesizing all the information? - Do we have all the information and annotation? Sometimes, data warehouses resemble landfills more than libraries. ### **MVP PHENOMICS – CORE TEAMS** | Cores | Main Objectives | |---|--| | CORE 1: Phenomics Core Group (PCG) | To secure data acquisition and create Phenomics Data Universe for MVP science To coordinate and facilitate phenotyping resources in support of MVP sub-studies To facilitate phenotyping needs of Disease Domain Working Groups To develop and maintain the MVP Phenotype Reference Library | | CORE 2: Data Analytics & Management | To clean, curate and validate the Survey data for MVP research use To maintain MVP core demographics database for analytics and reporting To test and pilot Survey data elements as use cases in phenotype validation To manage and organize MVP phenomics data | | CORE 3: Applied Bioinformatics in Clinical Research | To develop methods and approaches to advance EHR data research in MVP To demonstrate the application of methods to real clinical questions To innovate and apply methods to solve big data phenotyping challenges | ### **MVP PHENOMICS – CORE Tables** | Table | Description | |----------------------------|--| | MVP Roster | List of MVP enrollees – used to create all other MVP Core Tables | | MVP Baseline Survey* | MVP Baseline Survey Variables | | MVP Lifestyle Survey* | MVP Lifestyle Survey Variables | | MVP Core | Standardized demographics data using CDW, OMOP and MVP Baseline | | Demographics* | Survey Data | | MVP Core Vitals* | Standardized vital signs (height, weight) at the time of MVP Baseline | | | Survey completion (uses both CDW and MVP Baseline Survey data) | | MVP Core Lifestyle* | Standardized lifestyle factors (smoking status, alcohol use, exercise, | | | nutrition scores) at the time of MVP Lifestyle Survey completion | | Diagnosis Table | All ICD-9/ICD-10 codes from inpatient and outpatient encounters | | Lab Table | Normalized laboratory table containing all available adjudicated | | | laboratory tests | | Medication Table | Normalized medication table containing requested VA drug classes | | Vitals Table | Height, weight, blood pressure, pain score, pulse | | Health Factors | Health factors related to smoking and alcohol use | | CPT Procedure Table | All CPT procedure codes | | ICD-9 Procedure Table | All ICD-9 procedure codes | | AUDIT-C | Responses to alcohol screening survey | ### **Laboratory Adjudication** – Process **Purpose:** Validate laboratory test type and results. Example: text search for "albumin" yields 4141 tests, with only 644 that actually correspond to serum albumin – with others being, for example, urine albumin, or serum pre-albumin. Further curation is needed to identify **serum albumin**. | Adjudication Protocol | Rationale | |--|--| | 1. Analyst compiles an initial spreadsheet of possible "serum albumin" tests | A text search creates an initial list of possible serum albumin tests. | | 2. Clinician performs initial review | Clinician reviews the name, specimen type, and descriptive statistics including total count of tests performed and average value to determine if this is indeed a serum albumin test. | | 3. Analyst adds relevant LOINC codes for clinician to further review | The text search may not have captured all possible serum albumin tests, so tests with relevant LOINC codes are added. (Note: LOINC codes are considered a standard but we found that they do not uniquely identify labs in the VA) | | 4. Second clinician performs review | Second clinician reviews, then both reviewers meet to resolve discrepancies. | | 5. Analyst creates final curated lab data set | The final table of accepted serum albumin tests is stored in SQL. | ## **Examples of Laboratory Adjudication Effort** | Laboratory test name | Number of tests adjudicated | Number of tests accepted | |----------------------|-----------------------------|--------------------------| | Hemoglobin A1C | 527 | 365 | | Serum albumin | 4141 | 644 | | Blood Glucose | 4578 | 905 | | HDLC | 770 | 377 | | Hemoglobin | 2638 | 331 | | LDLC | 1230 | 602 | | Serum Potassium | 2198 | 720 | | Serum Creatinine | 5212 | 705 | | Serum Sodium | 2608 | 757 | | Total Cholesterol | 2137 | 405 | | Triglycerides | 1528 | 390 | ### Serum Albumin Adjudication | | LabChem | | | | | | | | | | | | | | | | | |--------|-----------|------------------|--------------|------|-------|-------|--------|-------|-----|------|-----|------|-----|------|------|-------|-------| | Accept | TestSID | LabChem TestName | Specimen | VISN | Sta3n | Units | n | min | p1 | р5 | p10 | p25 | p50 | p75 | p90 | p99 | max | | Yes | 800000948 | ALBUMIN(SEATTLE) | Serum | 20 | 648 | G/DL | 8985 | -0.22 | 3.1 | 3.7 | 3.9 | 4.2 | 4.4 | 4.6 | 4.8 | 5.2 | 6 | | | | | Cerebral | | | | | | | | | | | | | | | | No | 800001031 | albumin(ep), csf | spinal fluid | 20 | 648 | % | 22 | 51 | 51 | 54 | 55 | 57 | 61 | 66 | 69 | 71 | 71 | | No | 800001092 | MICROALBUMIN | Urine | 20 | 648 | MG/DL | 70167 | 0 | 0.3 | 0.43 | 0.7 | 1.28 | 2.8 | 8.28 | 30.4 | 228.8 | 21321 | | Yes | 800001119 | ALBUMIN | Plasma | 20 | 648 | g/dL | 712338 | 0.1 | 1.9 | 2.6 | 3.1 | 3.8 | 4.2 | 4.4 | 4.6 | 5 | 67 | | Yes | 800001119 | ALBUMIN | Serum | 20 | 648 | g/dL | 21999 | 0.2 | 2.1 | 2.7 | 3.2 | 3.9 | 4.3 | 4.5 | 4.7 | 5.1 | 7.6 | ## **Medication Adjudication** **Purpose**: Curating VA pharmacy data requires less clinician input than adjudicating laboratory tests, but there is still considerable work required to create a usable medication dataset across data sources. | Adjudication Protocol | Rationale | |--|--| | 1. Analyst compiles an initial spreadsheet of possible anti-lipemics | Selecting all medications in VA drug class "CV350" creates an initial list of anti-lipemics. The analyst parses out the route, dose, units and drug names from a singled field in the EMR. | | 2. Clinician performs initial review | Clinician reviews the list of medications and confirms if the pre-populated columns containing class, generic ingredient name, dose, units and route are correct. | | 3. Analyst reviews | The analyst reviews the spreadsheet to ensure that study drug or placebo drugs have not been included. Mappings to other standard naming conventions (ex: RxNorm) are incorporated into the table. | | 4. Analyst creates final curated lab data set | The final table of anti-lipemics is stored in SQL. | # **Medication Adjudication** | Column | Description | Example | |-----------------------|--|---------------------| | Variable from CDW | | | | LocalDrug SID | Drug ID from CDW | 800170761 | | National DrugSID | Drug ID from CDW | 800423770 | | LocalDrug | Drug name and dose from CDW | ATORVASTATIN | | NameWithDose | | CALCIUM 40 MG TAB | | NationalDrug | Drug name and dose from CDW | ATORVASTATIN | | NameWithDose | | CALCIUM 40 MG TAB | | Variable Created by A | nalyst | | | Generic_Name1 | Drug name at ingredient level – extracted from | Atorvastatin | | | LocalDrugNameWithDose | | | Generic_Name2 | Drug name at ingredient level, populated for | | | | combination drugs – extracted from | | | | LocalDrugNameWithDose | | | Generic_Type | Sub-class – determined when identifying goal of | Statin | | | review. In the example, the analyst is instructed to | | | | populate the subclass statin if generic name ends in - | | | | statin. | | | Class_Name | Class name pre-populated by analyst | Anti-lipemic agents | | Dose | Medication dose – extracted from | 40 | | | LocalDrugNameWithDose | | | Units | Medication units – extracted from | mg | | | LocalDrugNameWithDose | | | Dose_Form | Route of medication – obtained from the FDA | Tab | | | National Drug File drug table and supplemented with | | | | dose extracted from localdrugnamewithdose where | | | | missing | | | Class | Count | Class Name | |-------|-------|-----------------------------| | CV050 | 1790 | DIGITALIS GLYCOSIDES | | CV100 | 9832 | BETA BLOCKERS/RELATED | | CV200 | 9962 | CALCIUM CHANNEL BLOCKERS | | CV250 | 6668 | ANTIANGINALS | | CV300 | 8483 | ANTIARRHYTHMICS | | CV350 | 8854 | ANTILIPEMIC AGENTS | | | | ANTIHYPERTENSIVE | | CV400 | 6057 | COMBINATIONS | | CV500 | 954 | PERIPHERAL VASODILATORS | | CV701 | 2864 | THIAZIDES/RELATED DIURETICS | | CV702 | 3468 | LOOP DIURETICS | | | | CARBONIC ANHYDRASE | | CV703 | 918 | INHIBITOR DIURETICS | | | | POTASSIUM | | | | SPARING/COMBINATIONS | | CV704 | 2431 | DIURETICS | | CV709 | 456 | DIURETICS,OTHER | | CV800 | 5499 | ACE INHIBITORS | | CV805 | 3109 | ANGIOTENSIN II INHIBITOR | | CV806 | 240 | DIRECT RENIN INHIBITOR | | | | CARDIOVASCULAR | | CV900 | 2363 | AGENTS,OTHER | # VISN 1 Outpatient "Virtual Baseline Data Acquisition" and Interval from Anchoring Date ## **Smoking Phenotype** #### **Purpose** To develop a probabilistic algorithm to determine smoking status of never, former, and current using CDW structured data #### **Gold standard smokers** - Defined using MVP self-reported smoking status from the baseline and lifestyle survey - 93,888 MVP year 1 genotyped participants - 26% never smokers; 56% former smokers; 18% current smokers #### **Smoking-related CDW Data (inputs)** 1,568 smoking health factors reduced to 11 categories: - Smoking cessation medications - Bupropion HBR, Nicotine, Clonidine HCL, Bupropion HCL, Nortriptyline, Varenicline - ICD-9/ICD-10 codes for tobacco dependence or tobacco use - VHA clinic stop codes for smoking cessation clinic ## **Smoking Phenotype** #### **Modeling** - We conducted a Least Absolute Shrinkage Selection Operator (LASSO) regression using the MVP survey response as the gold standard - The regression coefficients were used to generate predicted probabilities of being a never, former, or current smoker - The category with the highest predicted probability was determined to be person's smoking status #### **Results** | | Algorithm | | | | | | | | | | |-------------------|-----------|--------|---------|--------|--|--|--|--|--|--| | MVP Gold Standard | Never | Former | Current | | | | | | | | | Never | 19,265 | 4,450 | 427 | 24,142 | | | | | | | | Former | 6,442 | 41,284 | 4,682 | 52,408 | | | | | | | | Current | 322 | 2,163 | 14,853 | 17,338 | | | | | | | | Total | 26,029 | 47,897 | 19,962 | 93,888 | | | | | | | #### Never Sensitivity: 74% • Specificity: 93% • PPV: 80% #### Former Sensitivity: 86% Specificity: 76% • PPV: 79% #### **Current** Sensitivity: 74% Specificity: 97% PPV: 86% ## **Stroke Phenotype** - Algorithm Development #### **Purpose** To develop and validate a reliable protocol to identify cases of acute ischemic stroke (AIS) from a large national database. #### **Possible Stroke** Relevant physician notes present, but missing primary imaging data and clinical exam at diagnosis ## **Stroke Phenotype - Results** **Table 2.** Classification Performance in the Validation Set (n=130) | | | No | | | | _ | |-------------------------|----------------------|---------|-------------|-------------|-------|--------------| | Algorithm | Stroke* | Stroke | Sensitivity | Specificity | PPV | AUC § | | Tirschwell [†] | | | 0.957 | 0.892 | 0.833 | | | Longitudinal cohort | p [‡] > 0.5 | p < 0.5 | 0.872 | 0.916 | 0.854 | 0.938 | | Case-control | p ≥ 0.85 | p ≤ 0.1 | 0.933 | 0.961 | 0.903 | 0.943 | ^{*} Decision rule for classifying acute ischemic stroke **Longitudinal cohort algorithm:** patient has stroke if predicted probability > 0.5 Case-control algorithm: patient has stroke if predicted probability ≥ 0.85 patient is a control if predicted probability ≤ 0.1 all other patients excluded #### Case-control algorithm performs best on two fronts: high classification metrics (sensitivity, specificity, PPV) **AND** excludes most patients labeled as "possible AIS" data (see boxplot on next page) [†] Tirschwell algorithm is Algorithm 1 from Tirschwell (2002) [‡] p is the predicted probability from the classification model. [§] Area under the ROC curve is unavailable for Tirschwell's algorithm because it is rule-based ## **Stroke Phenotype** Case-control algorithm excludes most Possible's Chart Reviewed Acute Ischemic Stroke ## Post-traumatic Stress Disorder (PTSD) Phenotype Purpose: To develop and validate EMR-based algorithm for identifying PTSD in a sample of Veterans using a probabilistic modeling approach This validation study was undertaken as a part of VA Cooperative Study #575B ("Genomics of Posttraumatic Stress Disorder in Veterans)," a genomewide association study of PTSD nested within the Million Veteran Program. # Performance of PTSD Algorithm | | | Sensitivity*
(95% CI) | Specificity *
(95% CI) | PPV*
(95% CI) | NPV*
(95% CI) | |------------------------------|-----------------------------|--------------------------|---------------------------|------------------------|------------------------| | Tier 1
Algorithm
(VHA) | Drop Possible
PTSD | 1
(0.978-1) | 0.995
(0.986-1) | 0.961
(0.896-1) | 1
(0.997-1) | | | Group Possible
+ Case | 0.877
(0.785-0.960) | 0.971
(0.955-0.984) | 0.792
(0.690-0.881) | 0.984
(0.971-0.995) | | | Group Possible
+ Control | 0.679
(0.586-0.765) | 0.979
(0.963-0.992) | 0.908
(0.831-0.961) | 0.912
(0.883-0.938) | | Tier 2
Algorithm
(VHA) | Drop Possible
PTSD | 0.995
(0.987-1) | 0.995
(0.987-1) | 0.995
(0.987-1) | 0.995
(0.987-1) | | | Group Possible
+ Case | 0.994
(0.984-1) | 0.655
(0.566-0.746) | 0.907
(0.878-0.936) | 0.969
(0.920-1) | | | Group Possible
+ Control | 0.951
(0.928-0.969) | 0.964
(0.898-1) | 0.995
(0.986-0.995) | 0.712
(0.612-0.803) | ^{*} Statistics are proportionally weighted based on chart review selection ## Selection of MVP Cohort for PTSD GWAS | Prob(control) Cut-Off | # Controls | % Controls Retained | |-----------------------|------------|---------------------| | >0.6 | 48,864 | 97.1% | | >0.7 | 46,319 | 92.0% | | >0.8 | 38,115 | 75.7% | | Prob(case)
Cut-Off | # Cases | % Cases
Retained | # Controls | Sensitivity | Specificity | |-----------------------|---------|---------------------|------------|-------------|-------------| | LASSO | 22,785 | 100% | 46,319 | 0.902 | 0.860 | | LASSO | 22,763 | 100% | 40,319 | 0.902 | 0.800 | | >0.5 | 22,164 | 97.3% | 46,319 | 0.907 | 0.858 | | >0.6 | 19,033 | 83.5% | 46,319 | 0.948 | 0.850 | | >0.7 | 16,092 | 70.6% | 46,319 | 0.977 | 0.837 | | >0.8 | 15,054 | 66.1% | 46,319 | 0.979 | 0.827 | | >0.9 | 13,110 | 57.5% | 46,319 | 0.984 | 0.809 | # Overview: Algorithm Development and Validation Process - 1) Select Initial T1 Algorithm (rules-based algorithm) - Based on literature review - 2) Chart Validation and Evaluation of T1A - 3) Build T2 Algorithm Model (probabilistic approach) - Literature review informed initial variable selection - Limited by available data - 4) Iterative process undertaken to find best model for the data - 5) Chart Validation and Evaluation of T2A - 6) Determine Final Algorithm for GWAS (T3A) # NLP as a key component: Feature extraction # Automated Feature Extraction for Phenotyping (AFEP) # High Throughput Phenotyping Pipeline #### **General Framework** # Our Vision for Phenotyping in MVP: A New Aproach # Semi-automated phenotyping combines features of manual and automated phenotype development