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1. How can eMERGE improve upon the current
labor-intensive phenotyping toward fully-
automated phenotyping methods to increase
phenotyping efficiency and validity using EMRs?



Phenotype sharing

* One part of the labor is sharing

— eMERGE adopting OHDSI OMOP Common Data
Model

— Convert current eMERGE data warehouses to
same schema and vocabulary

— But preserve source information



Deep Information Model: OMOP v5.2
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Extensive vocabularies

Breakdown of OHD S| concepts by domain, standard class, and vocabulary

Drug
N

SNOMED

Multilex

VA Product

Multilex

Multum [NDFRT

MESH

ICD10CM

ICD10

Colorby
First(vocabulary_id)

@ APC

@ Cohort

© CPT4

@ DRG
SNOMED @ETC

© Gemscript

@ Gensegno

@ GPI

@ HCPCS

ICD10

D ICD10CM

@ ICDICM

@ ICD9Proc

@ Indication

@ LOING
MESH @ iDC
@ MedDRA

Observation Procedure @ MESH

S

SNOMED

@ Multilex

@ Multum

@ NDC

@ NDFRT

@ OPCS4
SNOMED © OXMIS

© PCORNet

© Read

@ RxNorm

® sMQ

Measurement

S

SNOME




eMERGE phenotype generation

eMERGE phenotyping lessons
— [Kho AN, Sci Trans Med 2011]
Complexity of eMERGE phenotypes
— [Conway M, AMIA 2011]
Multi-modal approaches
— [Peissig PL, JAMIA 2012]
Use of NQF Quality Data Model
— [Thompson WK, AMIA 2012]
Improving validation
— [Newton KM, JAMIA 2013]
Design patterns
— [Rasmussen LV, JBI 2014]
PhEMA: Phenotype Execution and Modeling Architecture
— [Pathak et al.]



Phenotype generation lessons

Challenge of billing codes

Importance of NLP
— And multimodal in general

Complexity of effective phenotype definitions

Possible improvement from tools and reuse, but
mostly just slogging it out

Differing goals:

— Knowledge discovery via GWAS needs high PPV

— Knowledge deployment for decision support also
needs sensitivity



Phenotyping for the future

* High-fidelity phenotypes [Hripcsak G, JAMIA 2017]

— Encode degree, severity of condition
e Redo for past phenotypes?

— Exploit time to create more accurate phenotypes

— Encode time of condition
e Disease course, response to treatment

— Continuous states (topology, where not dichotomous)
— Hidden physiologic phenotypes (data assimilation)
— Latent abstract states (deep learning)

— Accommodate health care process bias



High-fidelity phenotypes

* Encode degree, severity of condition

Albers, AMIA 2015



High-fidelity phenotypes

* Exploit time to create more accurate
phenotypes

* Encode time of condition

Patient stable Patientill Patient stable Lapse in visits Patient stable

Clinician sampling:

Variability w.r.t. sequence time (7):

Hripcsak, JAMIA 2015



High-fidelity phenotypes

e Continuous states (topology, where not

dichotomous)
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High-fidelity phenotypes

* Hidden physiologic phenotypes (data
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High-fidelity phenotypes

Latent abstract states (deep learning)
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High-fidelity phenotypes

 Accommodate health care process bias
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2. How might machine-learning and other
advanced computational tools be used to

improve electronic phenotyping in the eMERGE
network?



Advanced computational tools

* Natural language processing
— Large proportion of phenotypes employ it
— Disparate systems across the network
— Most get by with relatively simple processing
— Working on sharing NLP!



Advanced computational tools

 Machine learning research
— eMERGE research: see following slides

— Anchors, noisy sets to learn from imperfect training
data (MIT, Stanford, Columbia)

— Active learning to reduce training set labor
(Marshfield, ...)

— Deep learning to characterize patients (Mt. Sinai, ...

— Physiologic phenotypes via data assimilation
(Columbia)
e E.g., kidney & liver function, body space, insulin excretion

— Topology for continuous phenotypes (Stanford,
Columbia)
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Harvard eMERGE — Rheumatoid Arthritis Machine Learning
Phenotype Algorithm

Machine learning algorithms can be effectively and efficiently applied to a large population to

accurately phenotype patients

Algorithms provide flexibility to adjust sensitivity and specificity to varied use cases compared to

pre-defined rules-based algorithms

Rheumatoid Arthritis Algorithm Development Workflow

Model Training
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using clinician chart

review (N=200) Train a machine learning
algorithm

Rheumatoid Arthritis Algorithm Final Feature Betas

Feature_ID Beta (weight)
(Intercept) -1.017
patient_dxenct -0.954
RA_COD_DX_RheumatoidArthritis_v2 1.937
RA_COD_DX_Psoriaticarthritis_v2 -0.122
RA_COD_DX_Lupus -0.529
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Feature Description
Model Intercept (beta 0)
Number of encounters with an ICD-9 code
Number of coded Rheumatoid arthritis diagnoses
Number of coded Psoriatic arthritis diagnoses
Number of coded Lupus diagnoses
Binary indicator where 1=any positive Rheumatoid Factor (RF) lab, else = 0



On Mapping Textual Queries to a Common Data Model

Sijia Liu*T, Yanshan Wang*, Na Hong*, Feichen Shen*, Stephen Wu?, William Hersh?, Hongfang Liu*
*Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
TDeparrmem‘ of Computer Science and Engineering, University at Buffalo, Buffalo, New York, USA
 School of Medicine, Oregon Health & Science University, Portland, Oregon, USA

* Challenges faced in using NLP for computational phenotyping
Poor portability caused by syntactic, semantic, and process variations
Semantic gaps among users, experts, and data
It is not “one size fits all” solutions for computational phenotyping

e Solutions proposed
Improve syntactic interoperability by adopting common data models

Mitigate the semantic gaps through a combination of deep learning representation,
information retrieval, informatics extraction, and late binding NLP and data normalization

Develop a platform for sharing NLP knowledge artifacts and mapping between data semantics

and expert semantics
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PhEMA

PhEMA: Phenotype Execution and Modeling Architecture

[Pathak et al.]

— Standards-based representation of phenotypes
— Visual tool for authoring phenotypes (PhAT

— Execution against OMOP or i2b2 (PheX

— Developing NLP & ML extensions

— Integrates with PheKkB
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NLP — ML Approach

Apply exclusion and inclusion criteria based
on ICD9 code filtering

Acquire EMR data for the filtered patients e =
Process clinical notes to discover SNOMED- 1 -1
CT and RxXNORM concepts with their ;i_; A | - é
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Phenotyping using
Relational Machine Learning

Journal of Biomedical Informatics 52 (2014) 260-270

Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier.com/locate/yjbin

Relational machine learning for electronic health record-driven @Cmsmk
phenotyping

Peggy L. Peissig **, Vitor Santos Costa”, Michael D. Caldwell“, Carla Rottscheit?, Richard L. Berg?,
Eneida A. Mendonca *, David Page %"

3 Biomedical Informatics Research center. Mar 1 ADIE 5. Comparison of eMERGE phenotyping model precision to /ILP+BP
b DCC-FCUP and CRACS INESC-TEC, Departmel

peparmentof Computer Sciences UIREED - Cataract 0.960 - 0.977 0.9562 0.877
Dementia 0.730 — 0.897 0.897° 0.936
Type 2 Diabetes 0.982 — 1.000 0.990° 0.926
Diabetic Retinopathy 0.676 — 0.800 0.800° 0.976

4 P+BP- Inductive Logic Programming + Borderline Positives taken from Table 3.



Active Machine Learning

active learning finds optimal classifier
with much less human assistance!

prob. of error
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Marshfield, Castro 2008



3. How can eMERGE assess phenotype
comparability across diverse patient populations
and diverse healthcare settings (e.g. academic
and county hospitals, community clinics and
other national healthcare systems)?



Diverse populations and settings

* Design specific eMERGE experiments

— Busy now with exisiting phenotypes

* Collaborate with All of Us Research Program

— Getting up to speed; uses same data model

* Collaborate with OHDSI
— Large, international set for phenotype part



