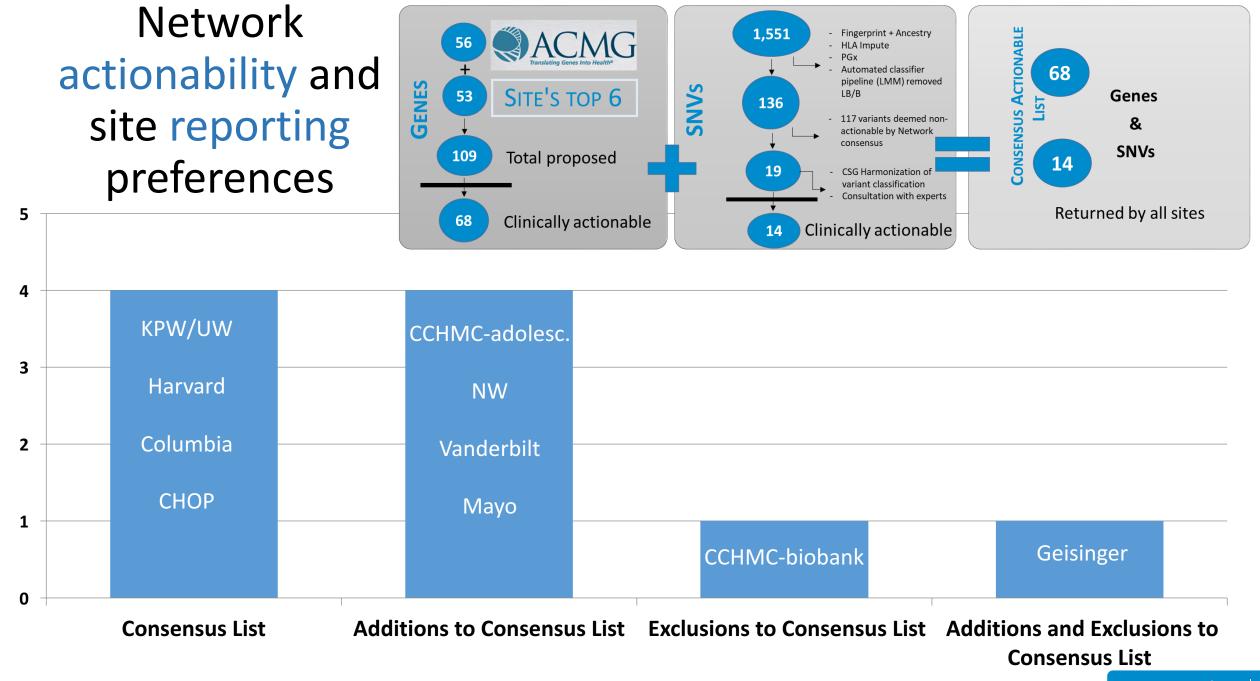
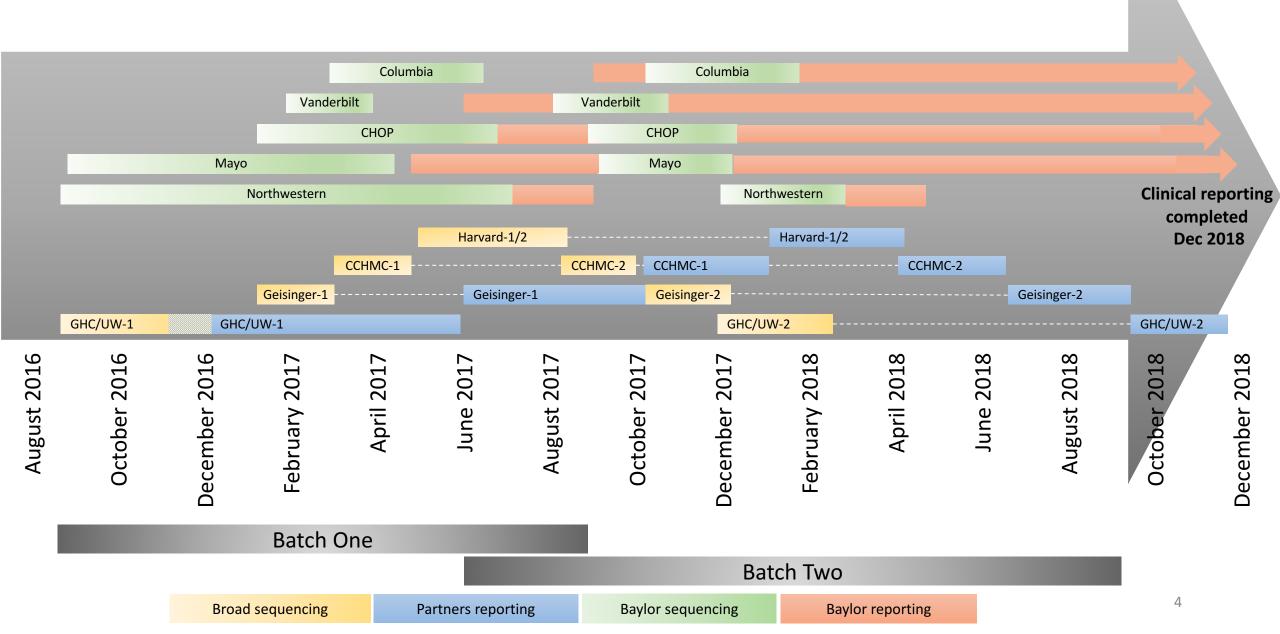

# Evidence Generation for Genomic Medicine


#### **Questions:**

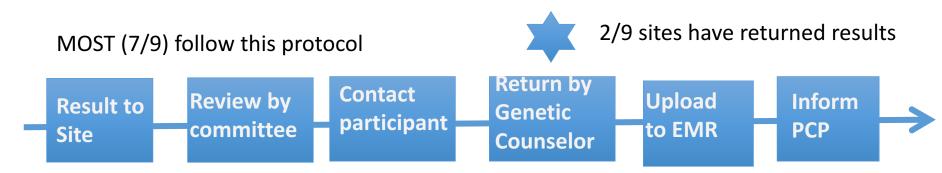
- 1. What methods can the eMERGE network develop and/or adopt to assess utility, validity, cost-effectiveness, quality of life, etc. of genetic/genomic testing?
- 2. How can eMERGE integrate other information (e.g., family history, physical and/or psycho-social environmental factors, etc.) with genetic/genomic testing results to improve our understanding of genomic medicine?


# Deliverable: Development of an eMERGEseq Platform



- Clinical reports are generated on the "Consensus Actionable List" and any specific genes or SNVs requested by individual sites
- To date: <u>14,077</u> samples sequenced and <u>3,716</u> reports issued




### **SEQUENCING and REPORTING: Timelines**



### Process of Return

#### No two sites are the same

ALL (9/9) return the 68 common set of genes plus institutional genes/SNVs



Minority (2/9) follow this protocol



# Rephenotyping by physical exam/lab/tests inform Pathogenicity and Penetrance: Seattle IFs (CRC primary)

| Gene   | Disorder                                        | N participants |
|--------|-------------------------------------------------|----------------|
| МҮВРС3 | hypertrophic cardiomyopathy                     | 8 (4LP)        |
| HFE*   | hemochromatosis                                 | 7              |
| BRCA2  | breast/ovarian cancer                           | 4              |
| SCN5A  | Brugada, Romano-Ward, dilated cardiomyopathy    | 3 (3LP)        |
| MYH7   | cardiomyopathy                                  | 2 (2LP)        |
| RYR1   | malignant hyperthermia                          | 2 (2LP)        |
| PALB2* | breast cancer                                   | 2              |
| DSC2   | Arrhythmogenic right ventricular cardiomyopathy | 1 (1LP)        |
| LDLR   | Familial hyperlipidemia                         | 1 (1LP)        |
| BRCA1  | breast/ovarian cancer                           | 1 -> 0         |
| MYL3   | hypertrophic cardiomyopathy                     | 1              |

15 cardiomyopathy (10 LP) /1163

Either wrong or low penetrance

Clinically treated as P

<sup>\*</sup>Not ACMG recommended

# Environmental measures: eMERGE Geocoding supplement

| Factors              | Source                                                  | Resolution        | National/<br>Local |
|----------------------|---------------------------------------------------------|-------------------|--------------------|
| Demographics         | Coordinating Center/Site EDW                            | Patient Level     | National           |
| SES                  | Census/ACS                                              | Block Group Level | National           |
| Built<br>Environment | RUCA (rural-urban-commuting-<br>area-codes              | Tract Level       | National           |
| Traffic Volume       | Google?                                                 |                   |                    |
| Road Density         | ArcGIS shapefiles                                       | Block Group Level | National           |
| Food Accessibility   | Food Environment Atlas (USDA Economic Research Service) | County Level      | National           |
| Water Quality        | NURE-HSSR database;<br>Enviromapper?                    | Various           |                    |
| Density of Parks     | ArcGIS shapefiles                                       | Block Group Level | National           |
| Walkability          | Walk Score Professional                                 | Zip Code          | National           |
| Entropy Index        | Census/ACS                                              | Block Group Level | National           |
| Crime                |                                                         |                   | Local              |
| Hospital Utilization | AHRF, HHS, HRSA                                         | County Level      | National           |

Slide courtesy of eMERGE CC

# Family history data

- Very useful for stratifying analyses, identifying pathogenic variants, etc.
- Not captured well or systematically in most medical records
- Some sites may have clinical patient survey data on family history
- A standardized format would be useful



# Family cascade testing and communication

- Used in pathogenicity assessment; important tool for estimating variant penetrance
- A major driver of cost effectiveness of genetic testing is follow-up testing of relatives
  - How do we spread the word?
- Need results early to be successful



# Challenges and Opportunities

| Challenge                                                        | <b>Opportunities</b>                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Know variant pathogenicity and penetrance (even for ACMG genes!) | <ul> <li>Standardize what is returned (as possible)</li> <li>Rephenotyping by EHR AND new PE</li> <li>Family cascade testing for cosegregation</li> <li>Pool data across sites</li> <li>Reanalysis of sequence for path changes</li> <li>Methods to share variant reclassifications</li> </ul> |
| Add family history to analyses                                   | Standardize tool across sites                                                                                                                                                                                                                                                                  |
| Add demographic data to analyses                                 | • Geocoding                                                                                                                                                                                                                                                                                    |
| Cost-effect when family gets information/tested                  | <ul> <li>Family communication tools (Psycho-social data)</li> <li>Cascade testing</li> <li>More efficient return of results/counseling</li> <li>Share negative reports</li> </ul>                                                                                                              |
| Data too late for much follow-up                                 | <ul> <li>Generate sequence earlier: front load sequencing budget,<br/>use existing platform (medical exome, exome, genome)</li> </ul>                                                                                                                                                          |

# **eMERGE OUTCOMES WORKGROUP**

**Co-Chairs:** Hakon Hakonarson (CHOP)

Josh Peterson (Vanderbilt)

Marc Williams (Geisinger)

#### **eMERGE OUTCOMES WORKGROUP: Charter**

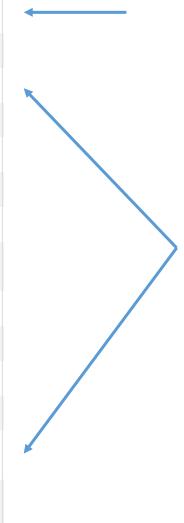
Mission statement: The Outcomes workgroup will develop <u>cross-site</u> outcomes to track implementation and impact of eMERGE III sequencing. The workgroup will focus on answering the overarching question of whether <u>returned</u> eMERGE III-generated genomic results impact health care utilization and outcomes of importance to patients and families.

# **Outcome Types**

(example pathogenic variant in MLH1 associated with Lynch syndrome)

- Process Outcomes
  - potential changes in health care utilization related to returning genetic information
    - Example: Colonoscopy ordered
- Intermediate or Surrogate Outcomes
  - a biomarker indicating benefit or harm is more likely
    - Example: Positive FOBT
  - adherence to a recommendation
    - Example: Colonoscopy performed
- Clinical Outcomes
  - the benefits or harms to a patient who receives an intervention
    - Example: Adenomatous polyp removed

# Chain of evidence


• Evidence that a process or intermediate outcome has a direct impact on health outcomes of interest

#### • Examples:

- Strong: Colonoscopy (intermediate) and colorectal cancer; LDLc <100 mg/dl (intermediate) and CAD
- Intermediate: Prescribing beta-blocker (process) and sudden cardiac death (if adherence measured this is intermediate outcome)
- Weak: CEA125 (intermediate) and ovarian cancer; Total body MR (intermediate) and Li-Fraumeni associated cancer mortality

### **eMERGE OUTCOMES WORKGROUP – Standard Data Collection Forms**

| Instrument name                                            | Fields | View<br>PDF  |
|------------------------------------------------------------|--------|--------------|
| General Intake Form                                        |        | <del></del>  |
| Return Of Result Information Form                          | 29     | <b>7</b>     |
| Aortopathy Outcomes                                        | 67     | <b>7</b>     |
| Arrhythmia Outcomes                                        | 43     | <b>7</b>     |
| Breast Cancer Outcomes - Women Only                        | 27     | <del></del>  |
| Cardiomyopathy Outcomes                                    | 25     | <b>7</b>     |
| Colorectal Cancer and Polyposis Outcomes                   | 24     | <del>,</del> |
| Cystic fibrosis transmembrane conductance regulator (CFTR) | 38     | <b></b>      |
| Ehlers Danlos Syndrome - Classical                         | 32     | <b>7</b>     |
| Ehlers Danlos Syndrome - Vascular                          | 22     | <b>7</b>     |
| Familial Hypercholesterolemia (FH)                         | 15     | <b>7</b>     |
| Generic Outcomes                                           | 11     | <b>7</b>     |
| Ornithine Transcarbamylase Deficiency (OTCD) Outcomes      | 6      | <b>7</b>     |
| Pediatric Familial Hypercholesterolemia (FH)<br>Outcomes   | 17     | <b>7</b>     |
| Tuberous Sclerosis Complex Outcomes                        | 11     | 太            |



# Challenges

- Reliance on process and intermediate outcomes due to length of eMERGE 3
- One time point for outcomes assessment (6 months post-RoR)
- Timing of sequencing and reporting
- Attribution of outcome to RoR (rely on assertion by site)

### **Opportunities-Measure health outcomes**

- Potential to follow some patients with RoR in eMERGE 4
  - Less straightforward that phenotype and GWAS efforts across eMERGE 1-3
- Identify conditions or genomic results where health outcomes are more likely to accrue in a four year time frame (or strong chain of evidence)
  - Pharmacogenomics for common drugs
  - Unrecognized genetic disorders (e.g. atypical Cystic Fibrosis, metabolic disorders, renal disease in dialysis patients)
  - Familial Hypercholesterolemia
- Get sequencing results faster to allow longer follow-up
- Develop and test methods to attribute outcomes to the Return of Results

# Challenges

- Outcome collection approaches site-specific (in contrast to phenotypes)
- Manual processes required for cascade testing

### **Opportunities-Implementation and Dissemination**

- Study variation in implementation and the impact on outcomes
  - R01 Dissemination and Implementation Lynch syndrome screening (Rahm-Geisinger and HCSRN)
  - If complete in eMERGE 3 can use to standardize implementation of RoR in eMERGE 4
- Study variation in implementation and the impact on outcomes
  - R01 Dissemination and Implementation Lynch syndrome screening (Rahm-Geisinger and HCSRN)
- Collaboration with pragmatic trials in IGNITE2 around certain conditions (2 approaches to evidence collection)
  - Need to use standard outcome measure
- Given public health impact of cascade testing make this a point of emphasis to develop and test methods
  - Could include legal and policy emphasis to inform novel approaches to contacting at risk relatives

# **Opportunities-Economic/Cost Effectiveness**

- Add in economic outcomes
  - R01 (Vanderbilt, U Washington, Geisinger) developing and testing models to understand which outcomes drive cost-effectiveness and other outcomes of sequencing
  - Use this work to prioritize outcomes to collect in eMERGE 4