Evidence Generation for Genomic Medicine #### **Questions:** - 1. What methods can the eMERGE network develop and/or adopt to assess utility, validity, cost-effectiveness, quality of life, etc. of genetic/genomic testing? - 2. How can eMERGE integrate other information (e.g., family history, physical and/or psycho-social environmental factors, etc.) with genetic/genomic testing results to improve our understanding of genomic medicine? # Deliverable: Development of an eMERGEseq Platform - Clinical reports are generated on the "Consensus Actionable List" and any specific genes or SNVs requested by individual sites - To date: <u>14,077</u> samples sequenced and <u>3,716</u> reports issued ### **SEQUENCING and REPORTING: Timelines** ### Process of Return #### No two sites are the same ALL (9/9) return the 68 common set of genes plus institutional genes/SNVs Minority (2/9) follow this protocol # Rephenotyping by physical exam/lab/tests inform Pathogenicity and Penetrance: Seattle IFs (CRC primary) | Gene | Disorder | N participants | |--------|---|----------------| | МҮВРС3 | hypertrophic cardiomyopathy | 8 (4LP) | | HFE* | hemochromatosis | 7 | | BRCA2 | breast/ovarian cancer | 4 | | SCN5A | Brugada, Romano-Ward, dilated cardiomyopathy | 3 (3LP) | | MYH7 | cardiomyopathy | 2 (2LP) | | RYR1 | malignant hyperthermia | 2 (2LP) | | PALB2* | breast cancer | 2 | | DSC2 | Arrhythmogenic right ventricular cardiomyopathy | 1 (1LP) | | LDLR | Familial hyperlipidemia | 1 (1LP) | | BRCA1 | breast/ovarian cancer | 1 -> 0 | | MYL3 | hypertrophic cardiomyopathy | 1 | 15 cardiomyopathy (10 LP) /1163 Either wrong or low penetrance Clinically treated as P ^{*}Not ACMG recommended # Environmental measures: eMERGE Geocoding supplement | Factors | Source | Resolution | National/
Local | |----------------------|---|-------------------|--------------------| | Demographics | Coordinating Center/Site EDW | Patient Level | National | | SES | Census/ACS | Block Group Level | National | | Built
Environment | RUCA (rural-urban-commuting-
area-codes | Tract Level | National | | Traffic Volume | Google? | | | | Road Density | ArcGIS shapefiles | Block Group Level | National | | Food Accessibility | Food Environment Atlas (USDA Economic Research Service) | County Level | National | | Water Quality | NURE-HSSR database;
Enviromapper? | Various | | | Density of Parks | ArcGIS shapefiles | Block Group Level | National | | Walkability | Walk Score Professional | Zip Code | National | | Entropy Index | Census/ACS | Block Group Level | National | | Crime | | | Local | | Hospital Utilization | AHRF, HHS, HRSA | County Level | National | Slide courtesy of eMERGE CC # Family history data - Very useful for stratifying analyses, identifying pathogenic variants, etc. - Not captured well or systematically in most medical records - Some sites may have clinical patient survey data on family history - A standardized format would be useful # Family cascade testing and communication - Used in pathogenicity assessment; important tool for estimating variant penetrance - A major driver of cost effectiveness of genetic testing is follow-up testing of relatives - How do we spread the word? - Need results early to be successful # Challenges and Opportunities | Challenge | Opportunities | |--|--| | Know variant pathogenicity and penetrance (even for ACMG genes!) | Standardize what is returned (as possible) Rephenotyping by EHR AND new PE Family cascade testing for cosegregation Pool data across sites Reanalysis of sequence for path changes Methods to share variant reclassifications | | Add family history to analyses | Standardize tool across sites | | Add demographic data to analyses | • Geocoding | | Cost-effect when family gets information/tested | Family communication tools (Psycho-social data) Cascade testing More efficient return of results/counseling Share negative reports | | Data too late for much follow-up | Generate sequence earlier: front load sequencing budget,
use existing platform (medical exome, exome, genome) | # **eMERGE OUTCOMES WORKGROUP** **Co-Chairs:** Hakon Hakonarson (CHOP) Josh Peterson (Vanderbilt) Marc Williams (Geisinger) #### **eMERGE OUTCOMES WORKGROUP: Charter** Mission statement: The Outcomes workgroup will develop <u>cross-site</u> outcomes to track implementation and impact of eMERGE III sequencing. The workgroup will focus on answering the overarching question of whether <u>returned</u> eMERGE III-generated genomic results impact health care utilization and outcomes of importance to patients and families. # **Outcome Types** (example pathogenic variant in MLH1 associated with Lynch syndrome) - Process Outcomes - potential changes in health care utilization related to returning genetic information - Example: Colonoscopy ordered - Intermediate or Surrogate Outcomes - a biomarker indicating benefit or harm is more likely - Example: Positive FOBT - adherence to a recommendation - Example: Colonoscopy performed - Clinical Outcomes - the benefits or harms to a patient who receives an intervention - Example: Adenomatous polyp removed # Chain of evidence • Evidence that a process or intermediate outcome has a direct impact on health outcomes of interest #### • Examples: - Strong: Colonoscopy (intermediate) and colorectal cancer; LDLc <100 mg/dl (intermediate) and CAD - Intermediate: Prescribing beta-blocker (process) and sudden cardiac death (if adherence measured this is intermediate outcome) - Weak: CEA125 (intermediate) and ovarian cancer; Total body MR (intermediate) and Li-Fraumeni associated cancer mortality ### **eMERGE OUTCOMES WORKGROUP – Standard Data Collection Forms** | Instrument name | Fields | View
PDF | |--|--------|--------------| | General Intake Form | | | | Return Of Result Information Form | 29 | 7 | | Aortopathy Outcomes | 67 | 7 | | Arrhythmia Outcomes | 43 | 7 | | Breast Cancer Outcomes - Women Only | 27 | | | Cardiomyopathy Outcomes | 25 | 7 | | Colorectal Cancer and Polyposis Outcomes | 24 | , | | Cystic fibrosis transmembrane conductance regulator (CFTR) | 38 | | | Ehlers Danlos Syndrome - Classical | 32 | 7 | | Ehlers Danlos Syndrome - Vascular | 22 | 7 | | Familial Hypercholesterolemia (FH) | 15 | 7 | | Generic Outcomes | 11 | 7 | | Ornithine Transcarbamylase Deficiency (OTCD) Outcomes | 6 | 7 | | Pediatric Familial Hypercholesterolemia (FH)
Outcomes | 17 | 7 | | Tuberous Sclerosis Complex Outcomes | 11 | 太 | # Challenges - Reliance on process and intermediate outcomes due to length of eMERGE 3 - One time point for outcomes assessment (6 months post-RoR) - Timing of sequencing and reporting - Attribution of outcome to RoR (rely on assertion by site) ### **Opportunities-Measure health outcomes** - Potential to follow some patients with RoR in eMERGE 4 - Less straightforward that phenotype and GWAS efforts across eMERGE 1-3 - Identify conditions or genomic results where health outcomes are more likely to accrue in a four year time frame (or strong chain of evidence) - Pharmacogenomics for common drugs - Unrecognized genetic disorders (e.g. atypical Cystic Fibrosis, metabolic disorders, renal disease in dialysis patients) - Familial Hypercholesterolemia - Get sequencing results faster to allow longer follow-up - Develop and test methods to attribute outcomes to the Return of Results # Challenges - Outcome collection approaches site-specific (in contrast to phenotypes) - Manual processes required for cascade testing ### **Opportunities-Implementation and Dissemination** - Study variation in implementation and the impact on outcomes - R01 Dissemination and Implementation Lynch syndrome screening (Rahm-Geisinger and HCSRN) - If complete in eMERGE 3 can use to standardize implementation of RoR in eMERGE 4 - Study variation in implementation and the impact on outcomes - R01 Dissemination and Implementation Lynch syndrome screening (Rahm-Geisinger and HCSRN) - Collaboration with pragmatic trials in IGNITE2 around certain conditions (2 approaches to evidence collection) - Need to use standard outcome measure - Given public health impact of cascade testing make this a point of emphasis to develop and test methods - Could include legal and policy emphasis to inform novel approaches to contacting at risk relatives # **Opportunities-Economic/Cost Effectiveness** - Add in economic outcomes - R01 (Vanderbilt, U Washington, Geisinger) developing and testing models to understand which outcomes drive cost-effectiveness and other outcomes of sequencing - Use this work to prioritize outcomes to collect in eMERGE 4