Reactor Panel:
EMR Integration of Genomic Results and Automated Decision Support
Sandy Aronson & Casey Overby Taylor
eMERGE EHR integration working group co-Chairs

*Middleton
Bleyl
Jain
Chapman

Blackford
Steve
Praduman
Wendy

bmiddlet@hsph.harvard.edu
steve@genomemedical.com
pj@vibrenthealth.com
wendy.chapman@utah.edu

Apervita/Harvard
University of Utah
Vibrent Health
University of Utah

eMERGE & Beyond: The Future of Electronic Medical Records (EMR) and Genomics
October 30th, 2017
Rockville, MD
EMR Integration of Genomic Results and Automated Decision Support

• Questions:
 • What new or enhanced data standards are needed to enable electronic medical record (EMR) integration and automated decision support?

 • How can eMERGE make a knowledge representation that can support multiple levels of health literacy through tools (e.g., SMART apps) so that the same knowledge contained in the system will be available and useable by a genomic medicine specialist, primary care provider, patients, and their families?

 • What tools can eMERGE develop to ensure that patients and providers are kept up-to-date as the interpretation of genomic findings rapidly evolves?
Inputs to Framework for Discussion/Reactions

IOM Report Building Safer Systems for Better Care

Recent Review of CDS

Six dimensions of CDS: data, knowledge, inference, architecture and technology, implementation and integration, and users
Comments/Reactions

- **data,**
 - Requisite data standards
 - Patient preferences data
 - Genomic test result data
 - Clinical outcomes data

- **knowledge,**
 - Representation of complex hierarchical knowledge objects (rules, value sets, terminologies, ontologies)
 - Knowledge management (metadata, provenance)
 - Feedback loops – learning
 - Health literacy considerations (reports; providers and patients)

- **inference,**
 - Certainty management, confidence limits
 - Decision-theoretic concerns re patient preferences

- **architecture and technology,**
 - Externalized CDS services (e.g. FHIR plan definitions, SMArt apps)
 - Computable knowledge object I/O
 - Messaging std(s) (FHIR profiles; 2.X syntax)

- **implementation and integration,**
 - Workflow domain ontologies, setting specific factors
 - Provider facing v. Patient-facing CDS

- **users,**
 - Human-computer interaction(s) – static v. dynamic
 - Patient and provider preference models?
Summary assessment

• Data – move toward standards where feasible / possible
 • FHIR, CIMI, IHMI... OMOP
 • Work to develop standard transforms, semantic mapping

• Knowledge – embrace standards that are emerging
 • CQL
 • Work towards standardizing all the component parts of the K stack – recognize the hierarchical nature of the knowledge stack (and various relevant knowledge sources)
 • Controlled terminologies, ontologies, value sets
 • Recognize the potential of networked knowledge
 • Both in Authoring CDS artifacts
 • Executing CDS artifacts

• Recognize the need for implementation at scale – across multiple instances of an EHR and multiple EHRs – a ‘system of insight’
 • Patients have multiple sites of care across time and space
 • Implement knowledge assets at scale to promote reusability

• Work toward standardized CDS PGx presentation layer / applications / web services
• Recognize 90% of healthcare systems will NOT build it... will want to buy it
Research questions for CDS PGx

- Method of capturing and representing patient preferences and utilities
- Transitive semantic closure on data mapping
 - -> more automatic semantic mapping
- Contextual factors / setting specific factors influence on PGx CDS
- Evaluation – impact on patient and provider KAP (knowledge, attitudes, and practice)
Next steps

• Consider knowledge engineering / knowledge management infrastructure at scale
 • Building upon success with PheKB, CDS_KB, etc.
 • Promote open sourcing core knowledge assets

• Conduct more CDS PGx pilots / demonstrations
 • With build in evaluation component
 • SMArt on FHIR, Web services, web apps
 • At scale across multiple EMRs