Alzheimer's Disease Introduction

- Aging population.
- AD is common dementia with a shared pathology, but likely not etiology.
- No proven treatment or prevention (NIA mandate)

Major gene: APOE locus

Age at onset

genetics

Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease

Alzheimer's Disease Introduction

Aging population.

 AD is common dementia with a shared pathology, but likely not etiology.

No proven treatment or prevention

PCSK9 schematic of nonsense mutations associated with low LDL cholesterol

R46L variant

Drivers of Discovery

The New York Times

doi:10.1038/nature11283

A mutation in APP protects against Alzheimer's disease and age-related cognitive decline

Thorlakur Jonsson¹, Jasvinder K. Atwal², Stacy Steinberg¹, Jon Snaedal³, Palmi V. Jonsson^{3,8}, Sigurbjorn Bjornsson³, Hreinn Stefansson¹, Patrick Sulem¹, Daniel Gudbjartsson¹, Janice Maloney², Kwame Hoyte², Amy Gustafson², Yichin Liu², Yanmei Lu², Tushar Bhangale², Robert R. Graham², Johanna Huttenlocher^{1,4}, Gyda Bjornsdottir¹, Ole A. Andreassen⁵, Erik G. Jönsson⁶, Aarno Palotie⁷, Timothy W. Behrens², Olafur T. Magnusson¹, Augustine Kong¹, Unnur Thorsteinsdottir^{1,8}, Ryan J. Watts² & Kari Stefansson^{1,8}

- 1,795 Icelanders had whole genome sequencing
- Coding mutation (A673T) in the APP gene that
 - protects against AD
 - $-\downarrow$ cognitive decline in 'normal' elderly

Alzheimer Disease Sequencing Project: ADSP

- Objective 1: Identify novel risk raising genes and alleles for late-onset AD
- Objective 2: Identify novel protective genes and alleles for late-onset AD.

- Can a single design achieve both objectives?
- Power estimations
- WGS versus WES

Whole Genome Sequencing (30X)

Families	Number		
Caucasian families	42		
Caribbean Hispanic families	67		
Dutch families	2		
Total:	111		

502 cases, 82 unaffected, 584 total Flat; Phasing

ADSP Family Study (Tier 1a)

Pedigree connecting 103 patients with late-onset Alzheimer's Disease (LOAD) from the ERF/GRIP population.

4,465 persons across 18 generations

Whole Exome Sequencing (30X)

5,000 (actual 5,107) unrelated cases

• selected as cases with the lowest risk explained by APOE and age - young onset, APOE $\epsilon 2/\epsilon 2$, $\epsilon 2/\epsilon 3$, or $\epsilon 3/\epsilon 3$

5,000 (actual 4,976) unrelated elderly cognitively normal controls

• selected as controls least likely to convert to a case, based on age, APOE, and autopsy data - old, APOE $\epsilon 2/\epsilon 2$, $\epsilon 2/\epsilon 3$, or $\epsilon 3/\epsilon 3$ little or no AD neuropathology

1,000 cases from multiplex families – one/family

• (actual: 685 cases + 171 Caribbean Hispanic controls)

Endophenotypes: e.g. 21,150 Hippocampal volumes, 1811 with WES e.g. 39,693 with verbal memory, 7493 EA and 2488 AA with WES

CHARGE: Hippocampal Volume GWAS

Loci in or near genes related to apoptosis (*HRK*), ubiquitinylation (*FBXW8*), embryonic development (*WIF1*), oxidative stress (*MSRB3*), neuronal migration (*ASTN2;* associated with cognition, *AD* risk), glucose metabolism, proline cleaving enzymes targeted by incretins like sitagliptin (*DPP4*).

ADSP: Set-Up at a Glance

ADSP: Set-Up at a Glance

ADSP Progress Update

- Unique challenge: Starting with VCFs from two pipelines
 - GATK-HaplotypeCaller (from Broad Institute)
 - Atlas V2 (from Baylor HGSC)

Example QC: Mendelian Inconsistencies

- Relationships appear consistent with pedigree info
- # SNVs with inconsistencies per trios

Example QC: Apparent ethnicity mismatch

 Sample-level QC identified 5 samples that were outliers for heterozygosity measures

Replication Study Goals

- To provide a well phenotyped dataset of at least 40,000 European-ancestry (EA) samples (~20,000 cases and ~20,000 controls) for replicating and extending findings and a sample ~10,000 individuals from one or more other ethnic groups.
- Targeted re-sequencing of loci, genes or regions containing rare variants or structural variations associated with LOAD.
- Additional WES or WGS for replication and to increase sample size

Likely Available Samples with DNA, Phenotype and Consent

	Total ADSP	
Study	Cases	Total ADSP Controls
МАР		
ROS		
MARS	708	1837
ACT	652	2631
ADC	3494	5031
AA Genetics	27	432
Indianapolis AA	180	1346
MIRAGE	1024	1758
Miami	1326	1632
OHSU	266	223
GenADA	164	169
EAS	49	476
EFIGA*	2325	2057
NIA LOAD	1436	2465
WHICAP*	1019	3435
NOMAS	72	720
NCRAD	690	0
Genetic		
Differences	281	293
Total (3/28/14)	13713	24505

CHARGE +	Total	Total	Cases with	Controls
Study	Cases	Controls	WES	with WES
ASPS/PROD				
EM	364	848	80	5
CHS EA	615	2238	494	1776
CHS AA	153	352	28	61
ERF	198	2921	?	?
FHS	394	4048	153	2899
Rotterdam	1081	7540	609	2852
ARIC* EA	139	9777	120	4000
ARIC* AA	111	2123	240	2123
90+ Study*	540	270	0	0
SALSA	101	1371	0	0
Fundacio ACE	3645	1127	0	0
GEMS*	343	1987	0	0
HRS	600	13,000	0	0
Total (3/28/14)	8577	47,602		
Also GERAD, EADI				

Innovative SV Analysis Plan Caller and Center Specific Best Practices **Evaluate and Apply** Best tools **Analysis** Deliverable Data Lupski **Parliament Tools** Breakdancer **Triplicate Individual Call Sets** Delly Samples from Pindel 3 Centers **Project Level SVP** GenomeSTRIP Swan **Pilot Families** Family Level SVP Lumpy, etc. **Parliament** for **All 584 WGS Prioritized Variant List** Merging **BAMs**

WES Samples

22

Early Manuscripts

Design paper: Gary Beecham and Sudha Seshadri

Dominican linkage: Mayeux, submitted

European-American linkage: Pericak-Vance, submitted

QC "best" practices: Anita DeStefano, Adam Naj, Adrienne Cupples, Jennifer Brody

Other?

Sample of ADSP Investigators

- Marilyn Miller, Adam Felsensfeld, Shannon Biello
- Stacey Gabriel, Namrata Gupta, Rick Wilson, Dan Kobolt,
 Dave Larson, Richard Gibbs, Eric Boerwinkle, Will Salerno
- Gerard Schellenberg, Richard Mayeux, Margaret Pericak-Vance, Lindsay Farrer, Jonathan Haines, Adam Naj, Gary Beecham, Amanda Patch
- Sudha Seshadri, Ellen Wijsman, Anita DeStefano,
 Adrienne Cupples, Cornelia van Duijn, Josh Bis, Ken Rice,
 Myriam Fornage
- Allison Goate, Carlos Cruchaga
- And many others

