Executive Summary

On September 28, 2015, the National Human Genome Research Institute (NHGRI) convened a workshop to discuss scientific questions and opportunities that can substantively be addressed by a future program in clinical sequencing. Participants proposed the following recommendations for NHGRI’s consideration in each of six topic areas they were asked to address.

Facilitating Development of a Shared Evidence Base for Healthcare Systems

• Recognizing the need for an extensive and integrated knowledge base, develop, implement and disseminate site-specific models for learning healthcare systems that capture phenotype and health outcomes. Such systems should incorporate data both within and outside of NHGRI clinical sequencing activities
• Building upon experience to refine clinical tools, guidelines and recommendations based in part on CSER data and experience (e.g., ACMG recommendations), continue to facilitate the development of recommendations/guidelines for clinical sequencing in disease-specific and general genetics organizations
• Include families of individuals undergoing genomic testing in future studies
• Continue to generate evidence to inform regulatory and policy decision-making related to genetic medicine

Interpreting Variants / Actionability

• Improve standards for consistency, accuracy, and turnaround time in variant classification, including what evidence must be used for annotation, re-phenotyping, and re-interpreting data
• Generate and share additional data, to pre-emptively address gaps in evidence used to create guidelines and refine existing guidelines as they are used in the community
• Broaden and deepen the evidence base used for variant interpretation by:
 – Aggregating case-level data across multiple sites and contributing to case-level resources tailored to clinical data
 – Improving integration of databases and resources to synthesize and analyze heterogeneous data sources, facilitating accrual of evidence needed to assess clinical validity and clinical utility
 – Linking genotype data to family and longitudinal phenotype data to assess penetrance
• Assess and further enhance interactions between laboratories and clinicians to improve quality of clinical interpretation
• Link to other practitioner educational efforts related to variant interpretation and annotation
Assessing Clinical Utility

- Define specific measures of utility for clinical sequencing and improve how they are measured
- Adopt multiple approaches to studying and improving clinical utility, such as randomized designs and comparative effectiveness approaches, including comparison of clinical sequencing with other approaches in clinical medicine; establish how to harmonize or consider multiple measures at once
- Integrate rephenotyping data based on conditions known or suspected to be associated with a given genetic variant, to potentially improve diagnosis
- Deepen evaluation of long term health outcomes, including morbidity/mortality and aggregate measures
- Improve sequencing of structural variants and integration of functional genomic data to help capture a greater proportion of clinically meaningful variation
- As clinical sequencing becomes more prevalent in individuals without apparent disease, study its implications for population screening
- Assess the clinical utility of certain situations, such as diagnostic odyssey and reproductive decision making, that do not meet the traditional definition of “medical necessity”, but are still widely considered reasons for genetic testing

Patient-centered Research: From Consent to Outcomes

- Conduct studies incorporating patient-centered and family-centered perspectives, including:
 - The value of making a diagnosis as a patient-centered outcome
 - The impact of diagnosis on subsequent outcomes
 - Potential differences in the meaning of “actionability” to patients/family vs. physicians/payers
 - Near-term patient-specific outcomes of pharmacogenomic and diagnostic findings
- Leverage resources to connect patients with researchers and foster community, including the development of alternative approaches for Internet-wary patients
- Develop approaches and platforms to incorporate patient preferences in receiving genomic results, particularly variants of unknown significance
- Be flexible in adopting patient-centered approaches that can change as technology changes and the number and diversity of populations increases

Increasing Ancestral, Socioeconomic and Clinical Diversity

- Maximize the equitable distribution of gains in genomic medicine
- Design studies with diversity in mind, consistent with scientific goals
- Implement targeted methodologies and approaches
 - Focus on trust, work with community-based institutions
 - Recruit and sustain participation by underrepresented individuals
 - Be sensitive to barriers to participation (loss of income, transportation costs, etc.)
- Study the social determinants of health in conjunction with genomic and clinical information
- Broaden all aspects of diversity, including workforce diversity
Healthcare Utilization, Economics and Value

- Study the cascading effects of receiving genomic results on subsequent healthcare utilization by individuals and their family members as well as potential interventions to reduce unnecessary utilization
- Engage payers and providers on education and study design in the assessment process in order to evaluate the value of genomic tests in current as well as future models of reimbursement
- Develop and study methods to assess the impact of clinical sequencing on better patient care, health care quality, and delivery as well as potential variation in the quality of genomic medicine in conjunction with clinical sequencing and methods for better health care delivery
- Generate evidence to address legal, regulatory and policy issues in reimbursement that will influence the dissemination of genomic applications
- Utilize common measures and pool data as feasible
Main Report

Ushered in by the completion of the human genome sequence, coupled with advances in technology development, genomically informed diagnosis and treatment, and computational efficiency, the era of clinical sequencing is upon us. The evidence base for the use of genomic sequence to diagnose and treat patients in a clinical setting has evolved rapidly over the past several years. When the National Human Genome Research Institute (NHGRI) established the Clinical Sequencing Exploratory Research (CSER) Program in 2011 (http://grants.nih.gov/grants/guide/rfa-files/RFA-HG-10-017.html), the opportunity to comprehensively and routinely consider the application and utilization of genomic sequence data in clinical care was nascent and ripe for research to address critical questions about the application of genomic sequencing to clinical care of individual patients. There were unanswered questions as to which clinical contexts would be best served using a genomic sequencing approach, how analysis and interpretation tools should be standardized, and what bottlenecks existed in developing the infrastructure needed for clinical sequencing. A broad examination of the ethical and psychosocial implications of generating, interpreting and returning genomic sequencing results to physicians and patients in a clinical setting was also needed. Now in 2015, per-genome sequencing costs have decreased over 10-fold since CSER’s inception in 2011 (www.genome.gov/sequencingcosts) and resources are available for standardized interpretations of genetic variants [1]. As a result, clinical sequencing in many contexts has become increasingly cost- and time-efficient. However, the value of genomic information to an individual’s health and healthcare goes beyond costs, and must ultimately be addressed within a complex healthcare system. A key challenge to navigating this complex system is informed decision-making based on an evolving knowledge base that also considers clinical and personal utility, as well as access to needed genomic testing, potential impact on health disparities, and impact on follow-up resources.

To take stock of its existing efforts in clinical sequencing and anticipate future opportunities, NHGRI convened a workshop on Integrating Genomic Sequencing into Clinical Care: CSER and Beyond on September 28th, 2015. The objectives of the meeting were to: 1) summarize and evaluate key scientific contributions of the Clinical Sequencing Exploratory Research (CSER) Program; 2) identify and prioritize scientific opportunities and questions for the next 5-10 years that would address informed integration of genomic sequencing into clinical care; and 3) identify optimal organizational features of a potential follow-up program. The purpose of this report is to synthesize key discussion points and priority recommendations from the workshop. Feedback has been aggregated across session topics and speakers; for those interested in the full discussion, the meeting agenda and archived presentations are available at http://www.genome.gov/27562330. A background document describing CSER’s accomplishments is available at http://www.genome.gov/Pages/Research/ResearchFunding/DGM/CSER/CSER_Background_Document.pdf.
Setting the context: current NHGRI and NIH efforts related to clinical sequencing

Speakers: Eric Green, Teri Manolio, Carolyn Hutter, Katrina Goddard, and Lucia Hindorff

Pursuant to its 2011 Strategic Plan, Charting a Course for Genomic Medicine from Base Pairs to Benchside [2], NHGRI has an active and evolving portfolio in genomic medicine. Envisioned as a “test drive” program in which research challenges and opportunities could be identified and pursued in an exploratory setting, CSER was initially born from the intersection of the Genome Sequencing Program (http://www.genome.gov/10001691), Division of Genomic Medicine (DGM; http://www.genome.gov/27550079) and NHGRI Strategic Plan “Science of Medicine” domain. It joins a number of other genomic medicine programs housed in DGM with complementary emphases on electronic health records (EHR), undiagnosed diseases, newborn sequencing, implementation of established genomic tests, and curation of clinically relevant variants. CSER initially included six sites with an interdisciplinary tripartite structure comprising a clinical study (Project 1), generation and interpretation of sequence data (Project 2) and ethical, legal and social implications (Project 3). This structure encouraged multidisciplinary interactions as well as a dedicated focus on the intersections and interactions among these Projects (e.g., health provider-patient, physician-lab). Within 18 months, three additional tripartite project sites and a Coordinating Center were funded and two ongoing related efforts were integrated: 1)—a consortium of investigator-initiated grants focused on ELSI issues (http://grants.nih.gov/grants/guide/rfa-files/RFA-HG-11-003.html, http://grants.nih.gov/grants/guide/rfa-files/RFA-HG-11-004.html,); and, 2) the NHGRI Intramural ClinSeq study (http://www.genome.gov/20519355).

Encompassing a range of diverse clinical settings, including pediatric, cancer, cardiac, and healthy individuals, CSER has sequenced nearly 5000 individuals to date, and has contributed to the evidence base describing analytical and clinical validity and clinical utility of exome and genome sequencing. Through site-specific advances as well as CSER-wide Working Groups, CSER has refined criteria for the evaluation of genomic variants for pathogenicity, estimated the yield of diagnostic and secondary findings in recruited patients, proposed approaches to defining the incremental benefit of genomic sequencing, conducted healthcare utilization studies, and suggested recommendations or best practices for display of genetic information in the EHR, informed consent, and disclosure of genomic results. Opportunities and recommendations for future work in these and related areas have also been described at related workshops, including recommendations on Clinical Sequencing from the NHGRI Future Opportunities for Sequencing and Beyond meeting [3] and the NHGRI Genomic Medicine 8 meeting [4]. Looking ahead to the next 5-10 years, several high priority areas have now been identified: clinical diagnosis of unsolved cases; determination of appropriate use of gene panels, exome and genome sequencing; increased emphasis on patient-centered outcomes and larger, more diverse populations; evaluation of downstream health and economic outcomes; optimization of the delivery system; and iterative phenotyping.
Developing a shared evidence base for healthcare systems
Moderators: Dan Roden, Ian Krantz. Speakers: Heidi Rehm, Dan Masys

As genomic research on human health and disease moves from basic to translational, the extent to which clinical research occurs in the context of the larger healthcare ecosystem becomes more apparent. Within CSER, sharing variant-level interpretations among clinical laboratories, returning diagnostic and secondary genomic results to patients, and developing robust interactions between patients and health providers are examples of clinical research activities occurring within this ecosystem, with implications for patients, laboratories, and practitioners. Engaging the clinical community traditionally occurs via practice-based clinical guidelines, and evidence from CSER has contributed to the development and subsequent refinement of American College of Medical Genetics and Genomics (ACMG) guidelines on secondary findings [5] and pathogenicity criteria [6]. The value-added of genomic medicine research also includes the opportunity and responsibility to engage stakeholders such as payers and non-genetics healthcare professionals who will influence the adoption of genomic sequencing in routine clinical care. Further, gaps exist between recommendations and physician behavior, and data on when and why clinicians do not follow recommendations would be useful. One vision for moving beyond clinical guidelines, which are static, includes a healthcare system which learns from every encounter. A subsequent clinical sequencing program could facilitate the development of a shared evidence base by developing, implementing and disseminating site-specific models for learning healthcare systems. These model systems could be regarded as extensions of existing data sharing models, in which sites continue to use existing infrastructure to integrate clinical sequencing data with phenotype data, as is done currently in CSER through dbGaP and ClinVar. Models might extend to include health outcomes and health utilization data and dissemination through case-level (i.e., at the level of the individual patient) resources that are more tailored to clinical data. Such model systems would also rely on developing local protocols and governance structures for broad data sharing. Complementing other efforts, a future clinical sequencing program could encourage physicians and laboratories to collect phenotypes in a standardized format conducive to EHR integration as research participants are recruited and followed up. Ideally, more effort would be taken to catalog downstream patient implications and clinical actions to build a systems-level infrastructure to capture information across sites (e.g., a genomic decision support library). Such a resource should attempt to capture all downstream clinical information and not simply focus on rare clinical events such as adverse drug reactions. Future NHGRI clinical sequencing programs should also leverage existing experience with patient-physician-laboratory interactions and include components related to family engagement, phenotyping and return of results. Ultimately, the shared evidence base should also produce evidence that can be used for legal, regulatory, and policy decision-making, learn from non-NHGRI funded sequencing efforts, and provide a seamless connection between research and clinical care.

Variant interpretation and actionability

Recent progress has been made by the scientific community in annotating and interpreting genetic variants for clinical relevance. The use of a priori gene lists for considering secondary results for
return by laboratories was formalized by ACMG in 2013 [5]. Professional guidelines regarding annotation of pathogenicity were also recently issued [6], facilitating the standardization of variant interpretation. The diversity of approaches and clinical contexts within CSER facilitates empirical approaches to developing and refining recommendations such as these. For example, site-specific practices related to reporting of both primary and secondary findings vary within the CSER consortium, accommodating genes of particular diagnostic relevance to each site’s disease focus or reflecting professional judgment regarding additional genes relevant to secondary findings. Sites have summarized approaches to identifying actionable genes, shared data with ClinVar and disseminated site-specific gene lists. Additionally, a series of variant interpretation “bakeoffs” using lab- and ACMG-specific pathogenicity criteria are providing an opportunity to assess consistency of variant classification using standardized criteria, and are shedding light on areas that need further attention (e.g., interpretation of low penetrance variants and consistent interpretation of functional studies). As these recommendations were being developed, CSER sites shared relevant resources with the professional society committees, pre-emptively addressing gaps in evidence used to create the recommendations. Experience gained through use of the recommendations post-development is also helping to identify and address potential gaps in existing recommendations and the evidence supporting them.

In the next 5-10 years, continued work will be needed to broaden the evidence base used for variant interpretation in relation to clinical decision-making and to make these activities more accessible to clinical laboratories, practitioners, and policymakers. A more complete and reliable understanding of the clinical and phenotypic implications associated with specific variants requires interaction between sequencing laboratories and practitioners, including the sharing of variant interpretations, phenotypes and other relevant case-level data through resources such as ClinVar, that are tailored to clinical data. Use of this information more broadly requires improvements to existing databases/resources, including the potential to link a patient’s entire interpreted genome or exome to the EHR, to reanalyze data as the knowledge base evolves, and to iteratively phenotype patients. All of these recommendations underscore the link between genomic variants and clinical phenotype and the process by which variant interpretation, and re-interpretation, will only improve as knowledge accrues and as the interactions between labs and practitioners deepen. Notably, the notion of uncertain significance of variants is inherent to the dynamic nature of this process and participants saw parallels to other fields of medicine, such as radiology. Even with improved standards, knowledge and data sharing, there will still be levels of uncertainty and areas of disagreement. General efforts to familiarize practitioners, including non-genetics practitioners, with the nuances of variant interpretation, will be needed to appropriately counsel patients and their families.

Assessing Clinical Utility
Moderators: Mary Relling, Arul Chinnaiyan. Speakers: Robert Green, Euan Ashley.

The diagnostic yield of exome or genome sequencing is a common metric used to evaluate clinical utility. Interpretation of this metric becomes more complicated as one considers sequencing in individuals without overt clinical phenotypes and as the implications of sequencing broaden to clinically relevant secondary findings or changes in diagnosis. Clinical yields of pathogenic or likely pathogenic variants across various clinical contexts (presence or absence of disease, response to treatment, age)
have been measured across CSER sites and should continue to be measured in a future clinical sequencing program. In some clinical contexts, e.g., tumor sequencing, evidence shows that the depth of coverage and cost- and time-efficiency of gene-based panels currently outweighs the benefits of exome or genome sequencing. For pharmacogenes, terms other than “pathogenic” are needed to describe functional consequences of variants. The integration of broad and deep phenotype information, with diagnostic and secondary genomic findings, is also needed to assess penetrance. In the future, metrics will need to be refined as it becomes clearer which genomic tests are most appropriate in different clinical contexts.

Several recommendations related to methodological approaches were suggested for future studies. Participants emphasized the need for comparative effectiveness research and traditional methodologies such as randomized controlled trials to determine the incremental value of exome or genome sequencing over alternate approaches, including non-genomic based approaches. Randomized controlled trials are being incorporated in some of the existing CSER sites; however, these trials have relatively small sample sizes. As clinical sequencing becomes more prevalent and sample sizes for analysis increase, methods optimized for either common disease or N = 1 studies may need to be adapted as case-level data are aggregated for genotype-phenotype analysis. Capturing all clinically relevant variation will require incorporating alternate sequencing modalities that interrogate clinically relevant variation that is missed with current next-generation sequencing technologies (e.g., structural variation). As above, research protocols for rephenotyping are needed, as will effective and efficient methods for integrating functional genomic studies with clinical sequencing findings.

As clinical utility data become part of the evidence base necessary for clinical implementation, NHGRI should carefully consider how to foster the “virtuous cycle” of research and clinical care. Clarification of what constitutes useful metrics and to what extent such metrics encompass individual, family or societal benefit is also needed. Some measures of utility are less amenable to precise definition, such as the value of simply making a diagnosis, or of having information that is not necessarily clinically actionable. As clinical sequencing methods are continually improved and as experience accrues from clinical practice, so metrics will continue to evolve over time. Finally, as clinical sequencing is performed more frequently in apparently healthy individuals, the implications for population screening (for example, the potential benefits as well all downstream risks and costs) should also be studied.

Patient-centered Research: From Consent to Outcomes

The notion of patient-centered research is integral to many of the existing components of CSER that address ethical, legal, and psychosocial implications of clinical sequencing, which have spanned from studying the informed consent process to studying preferences regarding the return of results and reactions to receiving results. Through peer-reviewed publications, CSER has shared conceptual models, genetic counseling cases, and best practices regarding consent forms. These publications highlight common themes and challenges that have been addressed across the sites, such as facilitating
participant understanding and informed decision-making, as well as the need for diversity in approaches based on such factors as disease context and participant age. Investigators have also studied patients’ preferences for receiving secondary results, as well as clinician and system challenges. Defining and measuring common patient-centered outcomes within CSER is in progress as well.

Receiving a diagnosis is a key patient-centered moment, particularly for patients and families who have undergone a “diagnostic odyssey,” and current genomic medicine research places a heavy value on diagnosis. Participants strongly encouraged extending ongoing work to encompass familial and economic implications of receiving diagnostic or secondary genomic results. Follow-up of the patient and family should extend beyond the diagnosis to better understand its impact, including subsequent outcomes as well as outcomes that may have occurred in the absence of a diagnosis. Recognizing that patient advocacy and citizen scientist groups now have increasing convening power around recruitment and data analysis, NHGRI should leverage resources to connect patients/family members sharing common genetic or phenotypic information with researchers. Flexibility in such approaches will be needed as technology evolves, and to include a diversity of populations. Another area of future research with a dedicated patient focus is how, and not simply what, results should be returned. Relative to practitioners, patients may prefer more accessible (e.g., mobile-based) or customizable formats and may have a broader notion of what information, including variants of unknown significance, may be meaningful or actionable. Indeed, even the possibility of convening other patients with shared genomic or phenotypic information may be viewed by some patients as a next action, contributing to the idea that to a patient in search of an answer, “everything is actionable.” Pursuing these patient-centered models within a broader health system requires addressing governance of the data as well as aspects of data sharing that will address concerns at the individual/family level as well as the system level.

Increasing Ancestral, Socioeconomic and Clinical Diversity

Moderators: Pilar Ossorio, Greg Cooper. Speakers: James Evans, Carlos Bustamante.

That CSER and related genomic medicine programs occur in a broader societal context was particularly evident as participants considered the ways in which CSER should broaden ancestral, socioeconomic and clinical diversity (referred to henceforth simply as “diversity”). As one example of a CSER site recruiting diverse individuals, the University of North Carolina, Chapel Hill observed that the participation rate for minority participants was dependent heavily on practical issues and is enhanced through trust, coordination with healthcare, and geographical proximity. As CSER and related efforts continue to build an evidence base for clinical sequencing, it is imperative to ensure that any resulting advances in genomic medicine are equitably distributed. To date, there has not been sufficient inclusion of diverse populations, and NHGRI should implement deliberate and targeted approaches to increasing diversity. First, diversity should be an integral feature of study design that will improve the quality of the science, for example, through comprehensiveness of sampling and integrated approach to studying genetic and socioeconomic health determinants. In some cases, groups with particular relevance for the scientific questions at hand may need to be oversampled to achieve maximal scientific benefit and address health disparities. Efforts should be made to include populations that are traditionally not
considered to be underrepresented, but that may be underrepresented in clinical sequencing studies, or who have a high burden of a particular disease. Even with the proper questions and sampling design in hand, however, much work must be done to recruit and sustain participation from diverse populations. A common theme from CSER and external investigators was to focus on building trust in communities. Different models are likely to work; however, the end goals should encompass not just increased enrollment but empowerment of individuals, both patients/families and practitioners, to take action. It is also important to recognize substantial barriers to participation in some populations, such as loss of income due to time away from work and lack of basic healthcare for following up abnormal research findings, particularly those with lower socio-economic status. A final recommendation was to broaden workforce diversity.

Healthcare Utilization, Economics and Value

Moderators: Katrina Armstrong, Sharon Plon. Speakers: David Veenstra, Pat Deverka.

Envisioning a health system in which genomic information is part of the standard of care requires engaging diverse stakeholders to maximize the relevance of genomics to different healthcare systems. A diagnostic or secondary genomic result can potentially end a complicated diagnostic odyssey, change the course of treatment, or begin a cascade of follow-up for an individual and potentially, for his/her family members. The implications of these different outcomes are incompletely understood and future efforts should integrate measures of healthcare utilization, economics and value. CSER has published work on health economics and cost-effectiveness, and is currently harmonizing measures of healthcare utilization across sites. In a future clinical sequencing program, work done by CSER could be extended in a number of key areas. Comparative effectiveness studies of multiple genetic testing modalities could be enabled, to facilitate identification of the best test for a given purpose. Data collection should extend to the identification of common cross-site measures and pooling of data where feasible. As noted above, the implications for family members are incompletely understood and yet will undoubtedly have impact on healthcare utilization and value.

Future clinical sequencing research should address issues relevant to regulatory decision making and reimbursement, recognizing that policy in both of these areas is evolving. Researchers as well as payers are still learning what evidence is needed, so a framework within which relative priorities are outlined, rather than one that focuses simply on whether or not tests are covered, may be more appropriate. Recognizing that payers currently work within a strict contractual model for determining pre-authorization or reimbursement, a model of phased or provisional implementation may be more feasible in the near term as evidence is accumulating. New models of reimbursement, such as bundled payments and accountable care, where health organizations partner with payers in a coordinated way, should be considered when evaluating the value of genomic applications. Methods for involving payers in study conception and design should be considered; a payer advisory board might be one model. With regard to regulation of genomic testing, NHGRI recognizes the need to interact with regulatory agencies and when possible, contribute data and evidence to inform these agencies.
Summary and conclusions

Participants affirmed that CSER has made substantial progress in building the evidence base for clinical sequencing in diverse settings, as demonstrated by implementing sequencing pipelines in clinical settings; becoming aware of and sharing lessons learned in interpretation and return of genomic results; assessing clinical utility in a diagnostic and broader clinical context; sharing best practices for consent and results disclosure, and assessing patient-centered outcomes. The synergy among the CSER sites in these areas has led to the whole of CSER being much more than the sum of its parts. CSER fills a unique position in studying the patient-practitioner interaction and should continue its focus on characterizing the clinical encounter. As NHGRI considers future opportunities for its clinical sequencing portfolio, there was consensus on several high priority recommendations, organized below into broad conceptual areas and guiding principles.

Conceptual areas:

- Demonstrating the clinical utility of genomic sequencing through appropriately designed studies, in collaboration with stakeholders, and with recognition that the healthcare system is a resource-constrained setting
- Incorporating genomic modalities in addition to exome or genome sequencing, such as gene panels, where appropriate, to better understand the value added of exome or genome sequencing beyond targeted panels
- Characterizing the personal, economic and clinical impact of a patient’s genomic results on subsequent healthcare utilization and implications for family members (the “cascade”)
- Addressing the growing gap between decreasing costs of sequencing and increasing costs of interpretation and return of results, with a focus on making interpretation and return of results more efficient and accessible
- Improving standards for consistency in variant classification, including evidence used for annotation, re-phenotyping, and re-interpreting data. Data sharing with case-level resources tailored toward clinical data should be encouraged as feasible, to pre-emptively address gaps in evidence used to create the guidelines and refine gaps in released guidelines as they are used in the community.

Guiding principles:

- Diversifying the ancestral and socioeconomic background of patients and practitioners
- Retaining a broad scientific framework similar to that of CSER. Although the instantiation of a rapid learning health system requires concerted efforts beyond the purview of NHGRI alone, in the spirit of fostering such a system, any future clinical sequencing program should retain a broad framework similar to that of CSER, encompassing patient, practitioner and laboratory components, and integrating ELSI. Within this broad framework, scientific questions to be addressed should be specified \(a \ priori \), with particular attention to the interactions among
patients, practitioners, and laboratories that will generate the evidence needed for the above areas.

- Continuing to pursue ELSI components of CSER. It was clear that the ELSI components of CSER, initially designated as required and deliberately integrated, should continue to be pursued, and both an integrated ELSI component and an independent (“non-embedded”) ELSI component should be maintained.

- Retaining a consortium emphasis in high priority scientific areas. The value of a consortium approach was evident through activities such as the variant interpretation bake-off, which demonstrated benefit to individual sites as well as the CSER consortium, and will refine and improve future guidelines issued by professional societies.

- Preserve nimbleness to take advantage of unanticipated opportunities, as was done in CSER with respect to interacting with professional societies as recommendations were developed, or to address unexpected constraints.

The initial exploratory approach to CSER has begun to generate the evidence and next set of scientific questions necessary for the appropriate implementation of genomic sequencing into clinical care. For a future clinical sequencing program, continuing to frame these questions around the interactions of patients, practitioners and laboratories will further understanding of how to achieve personalized healthcare at the individual level and improve the effectiveness of healthcare.
References cited

Appendix 1. List of participants.

Parag Aggarwal
Senior Program Officer
Patient-Centered Outcomes Research Institute
(814) 504-6689
paggarwal@pcori.org

Katrina Armstrong
Physician in Chief
Department of Medicine
Massachusetts General Hospital
(617) 724-5232
karmstrong6@partners.org

Samuel (Sandy) Aronson
Executive Director of Information Technology
Partners HealthCare Personalized Medicine
(617) 768-8504
saronson@partners.org

Naomi Aronson
Executive Director, Clinical Evaluation, Innovation, and Policy
Blue Cross Blue Shield Association
(312) 297-5530
naomi.aronson@bcbsa.com

Euan Ashley
Associate Professor of Medicine and Genetics
Stanford University
(650) 498-4900
euan@stanford.edu

Steven Benowitz
Associate Director
Communications and Public Liaison Branch
National Human Genome Research Institute
National Institutes of Health
(301) 451-8325
steven.benowitz@nih.gov

Jonathan S. Berg
Associate Professor
Department of Genetics
Lineberger Comprehensive Cancer Center
The University of North Carolina at Chapel Hill
(919) 966-7043
jonathan_berg@med.unc.edu

Barbara Bernhardt
Clinical Professor of Medicine and Genetic Counselor
Division of Translational Medicine and Human Genetics
Perelman School of Medicine
University of Pennsylvania
(609) 923-7843
barbara.bernhardt@uphs.upenn.edu

Eric Boerwinkle
Professor and Chair
Human Genetics Center and Department of Epidemiology
Associate Director
Human Genome Sequencing Center at Baylor College of Medicine
University of Texas Health Science Center at Houston
(713) 500-9816
eric.boerwinkle@uth.tmc.edu

Joy Boyer
Program Director
ELSI Research Program
National Human Genome Research Institute
National Institutes of Health
(301) 402-4997
jb40m@nih.gov

Wylie Burke
Professor of Bioethics and Humanities
University of Washington
(206) 221-5482
wburke@uw.edu
Carlos Bustamante
Professor of Genetics
Stanford University
(650) 497-4382
cdbadmin@stanford.edu

Lon R. Cardon
Senior Vice President
R&D Alternative Discovery and Development
GlaxoSmithKline
(215) 275-9346
lon.r.cardon@gsk.com

Jonathan Chiang
Graduate Student
University of Massachusetts, Amherst
(774) 269-5584
jichiang@schoolph.umass.edu

Arul Chinnaiyan
Director
Michigan Center for Translational Pathology
S.P. Hicks Endowed Professor of Pathology Investigator
Howard Hughes Medical Institute
University of Michigan
(734) 615-4062
arul@med.umich.edu

Rex Chisholm
Adam and Richard T. Lind Professor of Medical Genetics
Vice Dean for Scientific Affairs and Graduate Studies
Feinberg School of Medicine
Associate Vice President for Research
Northwestern University
(312) 503-3209
r-chisholm@northwestern.edu

Mildred Cho
Professor
Stanford University
(650) 725-7993
micho@stanford.edu

Greg Cooper
Faculty Investigator
HudsonAlpha Institute for Biotechnology
(256) 327-9490
gcooper@hudsonalpha.org

Patricia Deverka
Principal Researcher
American Institutes for Research
(919) 918-4508
pdeverka@air.org

James Evans
Bryson Distinguished Professor of Genetics and Medicine
The University of North Carolina at Chapel Hill
(919) 619-6248
jpevans@med.unc.edu

Greg Feero
Research Director
Maine Dartmouth Family Medicine Residency
(207) 453-3100
wfeero@mainegeneral.org

Adam Felsenfeld
Program Director
National Human Genome Research Institute
National Institutes of Health
(301) 496-7531
adam_felsenfeld@nih.gov

Kelly Filipski
Program Director
National Cancer Institute
National Institutes of Health
(240) 276-6841
kelly.filipski@nih.gov
Levi Garraway
Associate Professor of Medicine
Department of Medical Oncology
Harvard Medical School
Senior Associate Member
Broad Institute
Dana-Farber Cancer Institute
(617) 632-6689
levi_garraway@dfci.harvard.edu

Chanita Halbert
Professor
Medical University of South Carolina
(843) 876-2442
mcarthuw@musc.edu

Daniel Gilchrist
Program Director
Division of Genome Sciences
National Human Genome Research Institute
National Institutes of Health
(301) 402-1966
daniel.gilchrist@nih.gov

Gail Henderson
Professor of Social Medicine
Director
Center for Genomics and Society
University of North Carolina School of Medicine
(919) 843-8268
gail_henderson@med.unc.edu

Katrina A.B. Goddard
Senior Investigator
Kaiser Permanente Center for Health Research
(503) 335-6353
Katrina.AB.Goddard@kpchr.org

Lucia Hindorff
Program Director
Division of Genomic Medicine
National Human Genome Research Institute
National Institutes of Health
(240) 271-1509
hindorffl@mail.nih.gov

Eric Green
Director
National Human Genome Research Institute
National Institutes of Health
(301) 496-0844
egreen@nhgri.nih.gov

Carolyn Mary Hutter
Program Director
Division of Genomic Medicine
National Human Genome Research Institute
National Institutes of Health
(301) 451-4735
huttercm@mail.nih.gov

Robert C. Green
Director
Genomes2People Research Program
Associate Director for Research
Partners Personalized Medicine
Division of Genetics
Department of Medicine
Brigham and Women’s Hospital
Broad Institute
Harvard Medical School
(617) 966-3216
rclgreen@genetics.med.harvard.edu

Regina Smith James
Acting Associate Director for Clinical Research &
Data Management
National Institute on Minority Health and
Health Disparities
National Institutes of Health
(301) 496-3462
rjames@mail.nih.gov
Cashell Elizabeth Jaquish
Program Director
Epidemiology Program
Prevention and Population Sciences Branch
Division of Cardiovascular Sciences
National Heart, Lung, and Blood Institute
National Institutes of Health
(301) 435-0447
cj68r@nih.gov

Gail P. Jarvik
Head
Division of Medical Genetics
University of Washington
(206) 221-3974
pair@u.washington.edu

Steven Joffe
Department of Medical Ethics and Health Policy
University of Pennsylvania School of Medicine
(215) 898-3055
joffes@upenn.edu

Dave Kaufman
Program Director
Division of Genomics and Society
National Human Genome Research Institute
National Institutes of Health
(301) 594-6907
dave.kaufman@nih.gov

Barbara Ann Koenig
Principal Investigator
Kaiser Foundation Research Institute
Professor
Centers of Excellence in ELSI Research Institute for Health and Aging
University of California, San Francisco
(415) 476-3786
barbara.koenig@ucsf.edu

Bruce Richard Korf
Wayne H. and Sara Crews Finley Chair of Medical Genetics
Professor and Chair
Department of Genetics
Director
Heflin Center for Genomic Sciences
Co-Director
HudsonAlpha Center for Genomic Medicine
Department of Genetics
University of Alabama at Birmingham
(205) 934-9411
bkorf@uabmc.edu

Ian Krantz
Professor of Pediatrics and Genetics
Division of Human Genetics
Department of Pediatrics
The Children's Hospital of Philadelphia
Perelman School of Medicine
University of Pennsylvania
(267) 670-2458
ian2@mail.med.upenn.edu

Alexander Lee
Scientific Program Analyst
National Human Genome Research Institute
National Institutes of Health
(301) 451-9991
alexander.lee@nih.gov

Debra G.B. Leonard
Chair and Professor
Department of Pathology and Laboratory Medicine
The University of Vermont Medical Center
(802) 847-6124
debra.leonard@uvmhealth.org

Rongling Li
National Human Genome Research Institute
National Institutes of Health
(301) 594-6524
lir2@mail.nih.gov
David Litwack
Policy Advisor
Office of In Vitro Diagnostics
U.S. Food and Drug Administration
(310) 796-6697
ernest.litwack@fda.hhs.gov

Tracy Lively
Deputy Associate Director
Cancer Diagnosis Program
Division of Cancer Treatment and Diagnosis
National Cancer Institute
National Institutes of Health
(240) 276-5944
livelyt@mail.nih.gov

Nicole Lockhart
Program Director
ELSI Research Program
National Human Genome Research Institute
National Institutes of Health
(301) 435-5697
lockhani@mail.nih.gov

Elaine Lyon
Medical Director, Clinical Molecular Genetics/Genomics
ARUP Laboratories
Professor of Pathology
University of Utah
(801) 583-2787
samantha.barker@aruplab.com

Teri Manolio
Director
Division of Genomic Medicine
National Human Genome Research Institute
National Institutes of Health
(301) 402-2915
manolio@nih.gov

Brad Margus
Founder and Chairman
A-T Children's Project
(954) 481-6611
brad@margus.com

Daniel Masys
Affiliate Professor, Biomedical and Health Informatics
Department of Biomedical Informatics and Medical Education
University of Washington
(360) 797-3260
dmasys@uw.edu

Jean E. McEwen
Program Director
Division of Genomics and Society
National Human Genome Research Institute
National Institutes of Health
(301) 402-4997
jm522n@nih.gov

Amy McGuire
Leon Jaworski Professor of Biomedical Ethics,
Director
Center for Medical Ethics and Health Policy
Baylor College of Medicine
(713) 798-2029
amcguire@bcm.edu

Joseph McInerney
Executive Vice President
American Society of Human Genetics
(301) 634-7318
mstoltz@ashg.org

Howard McLeod
Medical Director
DeBartolo Family Personalized Medicine Institute
Division of Population Sciences
Moffitt Cancer Center
(813) 745-3347
howard.mcleod@moffitt.org
Matthew Might
Visiting Associate Professor
Department of Biomedical Informatics
Harvard Medical School
Associate Professor
School of Computing
University of Utah
President, NGLY1.org
(404) 376-3204
matt@might.net

Deborah Nickerson
Professor
University of Washington
(206) 685-7387
debnick@uw.edu

Robert Luke Nussbaum
Chief Medical Officer
Volunteer Clinical Faculty
Invitae
University of California, San Francisco
(415) 264-2589
robert.nussbaum@invitae.com

Kenneth Offit
Professor
Clinical Genetics Service
Memorial Sloan Kettering Cancer Center
(646) 888-4059
offitk@mskcc.org

Lucila Ohno-Machado
Professor and Chair
Health System Department of Biomedical Informatics
Associate Dean for Informatics and Technology
University of California, San Diego
(858) 822-4931
machado@ucsd.edu

Pilar N. Ossorio
Professor
University of Wisconsin
(608) 316-4650
pnossorio@wisc.edu

Brad Ozenberger
Assistant Director
Washington University School of Medicine
McDonnell Genome Institute
(314) 803-2723
bozenber@wustl.edu

Melissa Parisi
Intellectual and Developmental Disabilities Branch
National Institute of Child Health and Human Development
National Institutes of Health
(301) 435-6880
parisima@mail.nih.gov

Eliseo J. Perez-Stable
Director
National Institute on Minority Health and Health Disparities
National Institutes of Health
(301) 402-1366
eliseo.perez-stable@nih.gov

Sharon Emma Plon
Professor
Department of Pediatrics/Hematology-Oncology
Department of Molecular and Human Genetics
Human Genome Sequencing Center
Baylor College of Medicine
(832) 824-4251
splon@bcm.edu

Erin Ramos
Program Director
Division of Genomic Medicine
National Human Genome Research Institute
National Institutes of Health
(301) 451-3706
ramoser@mail.nih.gov
Heidi L. Rehm
Director
Laboratory for Molecular Medicine
Partners Healthcare
Associate Professor of Pathology
Harvard Medical School
(617) 768-8291
hrehm@partners.org

Mary V. Relling
Chair
Pharmaceutical Department
St. Jude Children's Research Hospital
(901) 595-2348
mary.relling@stjude.org

Sue Richards
Professor, Molecular and Medical Genetics
Medical Director
Molecular Diagnostic Center
Knight Diagnostic Laboratories
Oregon Health and Science University
(503) 494-4416
richarsu@ohsu.edu

Dan Roden
Professor of Medicine and Pharmacology/
Director
Oates Institute for Experimental Therapeutics
Assistant Vice-Chancellor for Personalized
Medicine
Vanderbilt University School of Medicine
(615) 322-0067
dan.roden@vanderbilt.edu

Laura Rodriguez
Director
Division of Policy, Communications, and
Education
National Human Genome Research Institute
National Institutes of Health
(301) 594-7185
rodrigla@mail.nih.gov

Pamela Sankar
Associate Professor of Bioethics
Department of Medical Ethics and Health Policy
University of Pennsylvania
(215) 898-7136
sankarp@mail.med.upenn.edu

Jeffery A. Schloss
Director
Division of Genome Sciences
Extramural Research Program
National Human Genome Research Institute
National Institutes of Health
(301) 496-7531
schlossj@exchange.nih.gov

Sarah R. Scollon
Instructor, Certified Genetic Counselor
Department of Pediatrics
Baylor College of Medicine
(832) 824-4685
sxscollo@txch.org

Geetha Senthil
Program Officer
National Institute of Mental Health
National Institutes of Health
(301) 402-0755
senthilgs@mail.nih.gov

Michael W. Smith
Program Director
National Human Genome Research Institute
National Institutes of Health
(301) 402-1114
smithmw@mail.nih.gov

Heidi Sofia
Program Director
National Human Genome Research Institute
National Institutes of Health
(301) 496-7531
heidi.sofia@nih.gov
Santa Tumminia
Associate Director for Strategic Science Initiatives and Programs
National Eye Institute
National Institutes of Health
(301) 497-2234
tumminias@nei.nih.gov

David Leroy Veenstra
Professor
University of Washington
(206) 910-0593
veenstra@uw.edu

Lu Wang
National Human Genome Research Institute
National Institutes of Health
(240) 499-6631
lu_l_wang@hotmail.com

Michael Watson
Executive Director
American College of Medical Genetics and Genomics
(301) 718-9603
mwatson@acmg.net

Catherine Wicklund
Director
Graduate Program in Genetic Counseling
Associate Professor
Center for Genetic Medicine
Feinberg School of Medicine
Department of Obstetrics and Gynecology
Division of Clinical Genetics
Northwestern University
(312) 926-7468
c-wicklund@northwestern.edu

Robert (Bob) Wildin
Chief
Genomic Healthcare Branch
Division of Policy, Communications and Education
National Human Genome Research Institute
National Institutes of Health
(301) 402-7229
bob.wildin@nih.gov

Benjamin Wilfond
Director
Treuman Katz Center for Pediatric Bioethics
Seattle Children's Research Institute
Professor
Department of Pediatrics
University of Washington School of Medicine
Seattle Children's Research Institute
(206) 884-8355
benjamin.wilfond@seattlechildrens.org

Anastasia Wise
Program Director
Division of Genomic Medicine
National Human Genome Research Institute
National Institutes of Health
(301) 443-0585
anastasia.wise@nih.gov
Appendix 2. Meeting agenda.

Integrating Genomic Sequencing into Clinical Care: CSER and Beyond

DoubleTree by Hilton Hotel
Bethesda, MD

September 28, 2015

MEETING OBJECTIVES:

1. To summarize and evaluate key scientific contributions of the Clinical Sequencing Exploratory Research (CSER) Program.
2. To identify and prioritize scientific opportunities and questions for the next 5-10 years that would address informed integration of genomic sequencing into clinical care.
3. To identify optimal organizational features of a potential follow-up program.

Opening Remarks

8:15-8:30am Call to order and introductions Lucia Hindorff
8:30-8:50am Setting the Context Eric Green
15 min. presentation, 5 min. Q&A.

8:50-9:05am NHGRI’s Genomic Medicine Portfolio Teri Manolio
10 min. presentation, 5 min. Q&A.

9:05-9:15am Recommendations from NHGRI’s 2014 Workshop: Future Opportunities for Genome Sequencing & Beyond Carolyn Hutter

9:15-9:40am CSER: Veni, Vidi, and a Roadmap to Vici Katrina Goddard
20 min. presentation, 5 min. Q&A

9:40-9:50am NHGRI Perspective on CSER and Overview of Meeting Topics Lucia Hindorff
Presentations and Discussion

All topics below include consideration of relevant ELSI issues

9:50-10:40am Facilitating Development of a Shared Evidence Base for Healthcare Systems
Moderators: Dan Roden, Ian Krantz
Challenges/opportunities: Heidi Rehm (10 min.)
Reaction: Dan Masys (10 min.)
Group Discussion: 25 min.
Summary: Dan Roden (5 min.)

10:40-11:00am Break

11:00-11:50am Interpreting Variants / Actionability
Moderators: Debra Leonard, Levi Garraway
Challenges/opportunities: Gail Jarvik (10 min.)
Reaction: Elaine Lyon (10 min.)
Group Discussion: 25 min.
Summary: Debra Leonard (5 min.)

11:50am-12:40pm Assessing Clinical Utility
Moderators: Mary Relling, Arul Chinnaiyan
Challenges/opportunities: Robert Green (10 min.)
Reaction: Euan Ashley (10 min.)
Group Discussion: 25 min.
Summary: Mary Relling (5 min.)

12:40-1:10pm Working lunch (pick up lunches)

1:10-2:00pm Patient-centered Research: From Consent to Outcomes
Moderators: Chanita Hughes Halbert, Ben Wilfond
Challenges/opportunities: Steve Joffe (10 min.)
Reaction: Matt Might (10 min.)
Group Discussion: 25 min.
Summary: Chanita Hughes Halbert (5 min.)
<table>
<thead>
<tr>
<th>Time</th>
<th>Session Title</th>
<th>Moderators</th>
<th>Challenges/opportunities</th>
<th>Reaction</th>
<th>Group Discussion</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00-2:50pm</td>
<td>Increasing Ancestral, Socioeconomic and Clinical Diversity</td>
<td>Pilar Ossorio, Greg Cooper</td>
<td>Jim Evans (10 min.)</td>
<td>Carlos Bustamante (10 min.)</td>
<td>25 min.</td>
<td>Pilar Ossorio (5 min.)</td>
</tr>
<tr>
<td>2:50-3:40pm</td>
<td>Healthcare Utilization, Economics and Value</td>
<td>Katrina Armstrong, Sharon Plon</td>
<td>Dave Veenstra (10 min.)</td>
<td>Pat Deverka (10 min.)</td>
<td>25 min.</td>
<td>Katrina Armstrong (5 min.)</td>
</tr>
<tr>
<td>3:40-4:00pm</td>
<td>Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00-5:30pm</td>
<td>Meeting Summary and Prioritizing Future Opportunities in the Next 5-10 years</td>
<td>Lucia Hindorff and Carolyn Hutter</td>
<td></td>
<td></td>
<td></td>
<td>Bob Nussbaum and Lucila Ohno-Machado</td>
</tr>
<tr>
<td></td>
<td>15 minutes for summary slides, 75 minutes moderated discussion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:30-5:45pm</td>
<td>Closing comments</td>
<td>Eric Green</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:45pm</td>
<td>Adjourn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 3. Acknowledgments

- National Advisory Council for Human Genome Research (http://www.genome.gov/10000905) and the following Working Groups:
 - Genomic Medicine Working Group (http://www.genome.gov/27549220)
 - Genomics and Society Working Group (http://www.genome.gov/27551917)
- Sequencing Advisory Panel: William Gelbhardt, chair; Ewan Birney, Rex Chisholm, Andy Clark, Rod McInnes, Deirdre Meldrum, Len Pennacchio, Pamela Sankar, Alan Williamson
- CSER Advisory Panel: Katrina Armstrong, chair; Rex Chisholm, Mildred Cho, Chanita Hughes Halbert, Elaine Lyon, Ken Offit, Dan Roden, Pamela Sankar, Alan Williamson
- NHGRI leadership: Eric Green, Teri Manolio, Jeff Schloss, Larry Brody, Bettie Graham, Rudy Pozzatti
- CSER and Beyond meeting planning
 - Planning Committee: Chanita Hughes Halbert, Debra Leonard, Mary Relling, Dan Roden
 - Logistics: Saundra Bromberg, Capital Consulting
 - Workshop preparation and report: Lucia Hindorff, Carolyn Hutter, Dave Kaufman, Alex Lee, Teri Manolio, Jean McEwen, Elian Silverman