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Course and Lecture Objectives
Course Objective #2: To understand the various 
methods, their advantages, and their disadvantages for 
the definition of phenotypes (disease endpoints, 
quantitative traits, etc) for use in association studies.

Learning Objectives:
- Convey the importance of selecting appropriate 

phenotypes for your genomic research study

- Describe the properties of a good measure and the 
consequences of measurement error on study results

- Consider the advantages of using standard measures 
for your phenotype of interest
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Lecture Outline
1) Phenotype definition

1. Discrete verse quantitative traits 
2. Complex disease and natural history of disease
3. Selecting your phenotype

2) Measurement error
1. Properties of a good measure 
2. Consequences of measurement error

3) Advantages of using standard phenotypes
1. Why is it important to use standard measures?
2. Example of successful cross-study analyses 
3. Introduction to PhenX
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1. Phenotype (φαινότυπος)
Means “the form of what appears”
Root φαίνειν (phanein) also found in φαινόμενον
(phenomenon)
Also linked to φως, φωτός (light, of the light)
In order for something to appear, we need light to see it
A phenotype is the observable expression of an individual’s 
genotype

‘In writing the history of a disease…[T]he clear and natural 
phenomenon of the disease should be noted … accurately, and in 
all their minuteness; in imitation of the exquisite industry of those 
painters who represent in their portraits the smallest moles and 
faintest spots.’

-T. Sydenham (Medical Observations, 3rd ed. London, 1749)
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Discrete Trait

Discrete/Dichotomous
- Two values

- e.g. Type II Diabetes 
(No/Yes)

- Typically of direct 
clinical relevance (e.g. 
cancer, hypertension, 
arthritis)

dbGaP: http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap

Data from The Finland-United States Investigation of NIDDM 
Genetics (Fusion) Study

YesNo

Distribution of Measured Values for Type II Diabetes
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Quantitative Trait

Quantitative/Continuous
- Range of possible values 

(e.g. Systolic blood 
pressure, BMI)

- Can be reduced to a 
discrete/dichotomous trait 
by using a predefined 
threshold value

dbGaP: http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap

Data from the GAIN: Search for Susceptibility Genes for 
Diabetic Nephropathy in Type 1 Diabetes Study

Distribution of Measured Values for BMI

BMI (kg/m2)
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Gene & Environment Contribution to Disease

(Manolio TA, et al, JCI, 118: 1590, 2008)

A. Monogenic Disease. A variant in a single gene is the primary determinant of a 
monogenic disease or trait, responsible for most of the disease risk or trait variation 
(dark blue sector), with possible minor contributions of modifier genes (yellow 
sectors) or environment (light blue sector).  B. Complex disease. Many variants of 
small effect (yellow sectors) contribute to disease risk or trait variation, along with 
many environmental factors (blue sector). 
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Complex Disease
Characterized by high levels of genetic complexity; 
multiple genes may act independently or interact 
with other genes to influence the phenotype

Multiple manifestations with varying degrees of 
genetic influence
- e.g. Myocardial Infarction, Coronary Artery 

Atherosclerosis, and Sudden Cardiac Death are forms of 
Coronary Disease

Multiple causes, which may be attributed to 
separate or overlapping genetic influences
- e.g. Atherosclerosis caused by lipid accumulation, 

inflammation, endothelial disruption, and thrombosis.
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Complex Disease
Difficult to distinguish individuals with “sub-clinical” 
disease from “non-diseased” individuals if early 
stage diagnosis is inadequate

Characterized by variable age of onset of clinical 
symptoms

Environmental factors may modify the genotype-
phenotype relationship; thus, disease expression 
range from nearly undetectable to severely 
debilitating

(Ellsworth DL and Manolio TA, Annals of Epi, 1999)
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Natural history of disease

Outcome:
Cure
Control
Disability
Death

Biologic 
Onset

Time

Pathologic 
Evidence

Sub-Clinical Phase Clinical Phase

Symptoms 
& Signs Medical 

Care 
Sought

Diagnosis
Treatment

Non-diseased

Some Sources 
of Data

Interviews

Clinical records

Hospital records

(Adapted from Gordis, 3rd Ed, 2004)
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Some Limitations of Hospital Data

Hospital admissions are selective in relation to:
- Demographics
- Severity of disease
- Associated conditions
- Admission patterns

Hospital records are not typically designed for 
research.  They may be:
- Incomplete, illegible, or missing
- Variable in diagnostic quality

Populations at risk are not generally defined
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Some Limitations of Clinical Data
Can be a rich source of patient specific data 
(clinical exam, diagnostic tests, and procedures), 
but…

Chart extraction can be difficult

Patients might receive care from additional sources

Uneven organization, incompleteness, legibility, 
etc…

Clinical diagnostic criteria can vary and change 
over time
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Some Limitations of Interview Data
The respondent:
- Has the disease, but does not have symptoms and does 

not report the disease
- Has the disease, sought medication attention, but 

reports a different disease
- May provide disease information accurately, but it is 

recorded inaccurately

The interviewer may know the hypothesis being 
tested, thus probing more intensively in one group 
of respondents than another

Incomplete or missing data
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Selecting your phenotype
Goal: Reduce heterogeneity in your phenotype 
to increase your chance of finding genes!!

What disease/trait interests you?

Evidence for genetic influence on your disease/trait 
of interest

Homogenous cases (highly specific disease criteria)

Intermediate phenotypes (closer proximity to genes)
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Evidence for genetic influence
Familial Clustering: 

- Risk of disease in relative of case > risk in relative of non-
case or general population 

- Discrete Trait: Familial relative risk, Risch’s λs

- Continuous Trait: parent-offspring correlation & sib-sib 
correlation

Twin studies
- Comparing Concordance between Monozygotic Twins 

and Dizygotic Twins
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Association of rs10033464 & Atrial Fibrillation (AF)

Discovery Study (Iceland Cases):
- All cases of AF at two large hospitals

Replication Study (U.S. Cases):
- Younger patients with lone AF
- AF with co-existing hypertension
- Stroke patients with AF

(Gudbjartsson DF et al, Nature, June 2007)
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Association of rs10033464* & Atrial Fibrillation (AF)

Case / Control Mean Age (yr) OR p-value

Iceland 2801 / 17,714 1.40 9.4 x 10-9

United States

Lone AF 251 / 804 46.1 1.68 1.2 x 10-10

AF & Hyp 67 / 804 54.5 1.66 .001

Other AF 318 / 804 75.2 0.97 .015

(Gudbjartsson DF et al, Nature, June 2007)

OR = Odds Ratio; *PITX2 gene, known to be involved in early heart development
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Association of GAB2 alleles & LOAD

Late-Onset Alzheimer’s Disease (LOAD)
- Discovery set: clinically & neuropathologically confirmed 

LOAD cases and neuropathologically normal controls

- Rationale: to exclude misdiagnosed cases & cognitively 
normal controls who have LOAD neuropathology

(Reiman et al, Neuron 2007; 54:713-720)
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Association of GAB2 alleles & LOAD
Stage Cases (N) Controls (N) SNPs

1 446
Neuropathology 

Discovery

290 312,316

2 197
Neuropathology 

Replication

114 “

3 218
Clinical Replication*

146 “

Total 861 550 7

(Reiman et al, Neuron 2007; 54:713-720)

* To confirm genetic association independent of brain donor selection bias
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Association of GAB2 alleles & LOAD

SNP P-Value Freq. in 
Controls OR [95%CI

rs1385600 2.81 E-09 0.71 3.65 [2.34,5.71]

rs1007837 3.97 E-07 0.73 3.01 [1.94,4.68]

rs4945261 3.08 E-08 0.72 3.44 [2.18,5.43]

rs10793294 1.59 E-07 0.66 2.83 [1.90,4.21]

rs4291702 5.88 E-07 0.70 2.96 [1.91,4.59]

rs7115850 2.80 E-10 0.67 3.92 [2.51,6.11]

rs2373115 9.66 E-11 0.70 4.06 [2.81,14.69]

(Reiman et al, Neuron 2007; 54:713-720)

* Sample Size = 861 Cases & 550 Controls
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Rs2373115 interacts w/ APOE to modify risk

APOE*e4 
Group

APOE*e4 
OR [95% CI]

rs2373115
OR [95%CI]

APOE*e4 - 1.12 [0.82,1.53]

APOE*e4 + 2.88 [1.90,4.36]

All 6.07 [4.63-7.95] 1.34 [1.06,1.70]

(Reiman et al, Neuron 2007; 54:713-720)

Suggests GAB2 modifies LOAD risk in APOE e4 carriers

OR = Odds Ratio; ORs compare GG to GT/TT
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Intermediate Phenotypes
Phenotype that is heritable, measurable, and has a closer 
relationship to the biological process involved in culmination 
of disease

Represents a more elementary phenomenon

The # of genes affecting intermediate phenotype variation 
is smaller than the number of genes affecting the full 
disease/trait phenotypic variation

The genes affecting intermediate phenotypes have larger 
effect size

For an intermediate phenotype to be useful, it should 
be heritable & associated with disease/trait of interest!
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Intermediate Phenotypes

P = Gene Product; LL = Low Level Phenotype; INT = Intermediate 
Phenotype; HL = High Level Phenotype

Alzheimer’s Disease

Hippocampal atrophy 
(from MRI)

Cognitive function    
(MMSE score)

Α-Beta protein level

(Schork, NJ, Am J Respir Crit Care Med, 1997)
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Lecture Outline
1) Phenotype definition

1. Discrete verse quantitative traits 
2. Complex disease and natural history of disease
3. Selecting your phenotype

2) Measurement error
1. Properties of a good measure 
2. Consequences of measurement error

3) Advantages of using standard phenotypes
1. Why is it important to use standard measures?
2. Example of successful cross-study analyses 
3. Introduction to PhenX
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2. Measurement Error
Measure refers broadly to any way of capturing 
data on a certain characteristic of study subjects

Method could be self-administered questionnaire, 
personal interview, physical exam, lab test, 
medical records extraction, etc…

Regardless of characteristic or data collection 
method, there is a TRUE value of the characteristic 
for each study subject

Any discrepancy between the TRUE value and the 
MEASURED value is Measurement Error
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Properties of a good measure
Reliability
- describes consistency, reproducibility of a measurement
- A good measurement should yield the same value if 

applied repeatedly under similar conditions

Validity
- describes accuracy of a measurement
- A good measurement should yield the correct 

value/reflect the truth

Reliability is a prerequisite for validity

Reliability is necessary, but not a sufficient condition 
for validity
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Properties of a good measure
The goal is to hit the Bullseye with each dart:

Results are neither 
reliable or valid

Results are reliable, 
but not valid

Results are both 
reliable and valid

Modified from D.S. Bhola, PhD
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Quantifying Reliability
Discrete/Categorical Traits

- To what degree do the measurements agree beyond 
what we would expect by chance alone?

- Kappa (κ) ranges from 0 to 1

- Guidelines for Interpretation of Kappa (Source: Landis 
& Koch, 1977)

- Kappa Interpretation
- > .80 Almost perfect
- .61-.80 Substantial
- .41-.60 Moderate
- .21-.40 Fair
- .00-.20 Slight
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Kappa (κ) 

Measure # 2
Measure #1 + - Total

+ a b a+b
- c d c+d

Total a+c b+d N

Data layout for Calculating Kappa

κ= Po – Pe / 1-Pe

Where:

Po = observed concordance (% agreement observed)

(a+d) / N

Pe = concordance expected by chance (% agreement expected by chance alone)

(a+b)(a+c) +  (b+d)(c+d)
N                    N / N
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Kappa (κ): Example

Self-collected
Clinician collected + - Total

+ 170 132 302
- 128 985 1113

Total 298 1117 1415
Po = observed concordance

(170+985) / 1415 = 0.816

Pe = concordance expected by chance

(302)(298) +  (1113)(1117) = 0.666
1415             1415

Wright and colleagues (2000) studied genital-tract human papillomavirus 
(HPV) testing as possible screening test for cervical cancer.  The 
examined agreement between test results on swabs obtained by clinicians 
with swabs obtained by screeners themselves.  For 1415 women, both 
kinds of specimens were obtained:

κ = Po – Pe / 1- Pe

κ = 0.816 – 0.666 / 1-0.666

= 0.45, moderate agreement

(from Koepsell & Weiss,  page 221)
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Quantifying Validity
True status of characteristic of interest must be known (“gold standard”)
Compare measure of your characteristic of interest to the gold standard

Condition present

Test Result + -
+ a b
- c d

Total a+c b+d

Data layout for assessing validity of binary test

a = # of true positives

b = # of false positives

c = # of false negatives

d = # of true negatives

Sensitivity = when condition truly present, how often does the test detect it? 
= a / (a+c) 

Specificity = when condition is truly absent, how often does test give a neg. 
result?          = d / (b+d) (from Koepsell & Weiss,  page 223)

Presenter
Presentation Notes
 



32

Consequences of Measurement Error
Impact of measurement error on results depends on the 
way the error has arisen

Measurement error of a discrete/binary outcome is termed 
misclassification

Nondifferential (nonselective) misclassification of outcome
- Present whether errors in assessing subject’s status are similar 

regardless whether that subject has been exposed or not
- Generally leads to an attenuation of the estimated size of a true 

association between exposure and disease 
- i.e. bias towards null

Improving the resolution of measurement tools will allow 
more accurate characterization of the relationship between 
exposure (genotype) and disease!
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Lecture Outline
1) Phenotype definition

1. Discrete verse quantitative traits 
2. Complex disease and natural history of disease
3. Selecting your phenotype

2) Measurement error
1. Properties of a good measure 
2. Consequences of measurement error

3) Advantages of using standard phenotypes
1. Why is it important to use standard measures?
2. Example of successful cross-study analyses 
3. Introduction to PhenX
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3. Genome-Wide Association (GWA) Studies
GWA studies measure > 100,000 single nucleotide polymorphisms 
(SNPs) across the genome & relate them to common diseases and traits

Since 2005, over 160 GWA studies have identified robust SNP 
associations (P < 10-7) for nearly 60 diseases and traits

(http://www.broad.mit.edu/diabetes/scandinavs/type2.html)

- Type 2 Diabetes 

- 386,731 markers
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Unique Aspects of GWA Studies
Permit examination of genetic variation at an unprecedented level of 
resolution

Allow “agnostic” genome-wide evaluation

Once genome measured, can be related to any trait

Most robust associations in GWAS reports have not been with genes 
previously suspected of being related to the disease

Some significant associations are in regions that are not currently 
known to harbor genes

“The chief strength of the new approach also contains its chief problem: with more 
than 500,000 comparisons per study, the potential for false positive results is 
unprecedented.”

(Hunter DJ and Kraft P, NEJM, 2007)

“Thus, the sine qua non for belief in any specific result from a GWAS is not the 
strength of the P value in the initial study, but the consistency and strength of the 
association across one or more large-scale replication studies.”

Courtesy, Teri Manolio, NHGRI



36

Cross-Study Analysis is Essential

More bang for the buck!
- GWA and related studies are expensive
- Combining studies increases ability to detect loci with 

moderate effect size 
- Once genome is characterized it can be related to traits 

beyond those focused on in the initial study (with 
appropriate consent) 

Potential for cross-study analysis limited by lack of 
standardized measures being included in GWAS
- despite many risk factors common to multiple diseases 

(e.g. obesity, smoking, etc)
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Association of rs1042725 (HMGA2) & height

Study
(women only)

Mean 
Age

N Mean height (cm) by genotype
TT             CT            CC

P-
value

GWA
WTCCC (T2D)
DGI (T2D)
DGI (Controls)
Combined

57.9
65.2
58.5

792
638
546
>4K

160.4
160.0
162.1

161.5
161.3
162.8

162.2
162.1
163.7

0.0006
0.003
0.003
4x10-8

Replication 
UKGCC T2D
EFSOCH parents
Combined

64.0
32.9

820
936

>19K

159.0
164.6

159.3
165.0

159.9
165.4

0.037
0.004

3x10-11

All studies >23K effect size/C allele ~0.4cm 4x10-16

(Weedon et al, Nature Genet 2007; 39:1245-50)
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Association of rs1042725 (HMGA2) & height

Study
(women only)

Mean 
Age

N Mean height (cm) by genotype
TT             CT            CC

P-
value

GWA
WTCCC (T2D)
DGI (T2D)
DGI (Controls)
Combined

57.9
65.2
58.5

792
638
546
>4K

160.4
160.0
162.1

161.5
161.3
162.8

162.2
162.1
163.7

0.0006
0.003
0.003
4x10-8

Replication 
UKGCC T2D
EFSOCH parents
Combined

64.0
32.9

820
936

>19K

159.0
164.6

159.3
165.0

159.9
165.4

0.037
0.004

3x10-11

All studies >23K effect size/C allele ~0.4cm 4x10-16

(Weedon et al, Nature Genet 2007; 39:1245-50)
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Association of rs1042725 (HMGA2) & height

Study
(women only)

Mean 
Age

N Mean height (cm) by genotype
TT             CT            CC

P-
value

GWA
WTCCC (T2D)
DGI (T2D)
DGI (Controls)
Combined

57.9
65.2
58.5

792
638
546
>4K

160.4
160.0
162.1

161.5
161.3
162.8

162.2
162.1
163.7

0.0006
0.003
0.003
4x10-8

Replication 
UKGCC T2D
EFSOCH parents
Combined

64.0
32.9

820
936

>19K

159.0
164.6

159.3
165.0

159.9
165.4

0.037
0.004

3x10-11

All studies >23K effect size/C allele ~0.4cm 4x10-16

(Weedon et al, Nature Genet 2007; 39:1245-50)
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FTO Variant (rs9939609), T2 Diabetes, & Obesity

Diabetes Association

Study Cases Controls OR 95% CI p-value
WTCCC (TD2 Ph 1)
WTCCC (TD2 Ph 2)
- Adjusted for BMI

1,924
3,757

2,938
5,346

1.27
1.15
1.03

[1.16-1.37]
[1.09-1.23]
[0.96-1.10]

5 x 10-8

9 x 10-6

0.44

Frayling et al, Science 2007; 316:889-893

- Adjusted for BMI 1.03 [0.96-1.10]          0.44

Association of rs9939609 with T2D risk mediated through BMI

Mean BMI (kg/m2)
Study % ♂ N TT AT AA p-value
WTCCC TD2 cases
UKGCC TD2 cases
EFSOCH controls
EPIC-Norfolk (pop-based)

58
57
51
47

1,913
2,961
1,746
2,425

30.2
30.6
24.5
25.9

30.5
31.0
25.2
26.2

32.0
32.0
25.4
26.6

8 x 10-6

3 x 10-5

0.0002
0.001

All studies 3 x 10-35All studies (Bonferonni correction) 1.2x10-29
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www.phenx.org
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PhenX Domains

Aging
Alcohol, Tobacco, and Other 
Substances*
Anthropometrics*
Cancer
Cardiovascular
Central Nervous System
Demographics*
Child development
Diet
Diabetes

Exposures & Responses
Gastrointestinal
Immunity
Lung Function
Ocular 
Oral Health
Physical Activity
Psychosocial
Renal Function
Reproduction
Skin/Bone/Muscle
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Demographic Measures
Age
Ancestry
Race/Ethnicity
Sex/Gender
Current Marital Status
Current Employment Status
Education
Income/Wealth
Health Care
Years in the U.S.
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Summary Points

Selecting appropriate phenotypes for your genomic 
research study is important

Use reliable and valid measures to capture the 
information about your disease/trait and relevant 
covariates

To increase potential for cross-study analysis, think 
about using commonly used measures with 
standard assessment protocols
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Take home message…

PHENOTYPE,
PHENOTYPE, 

PHENOTYPE!!!
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Association of rs563694 & fasting glucose

Rationale: Understanding genetic variants that regulate fasting 
glucose concentrations may further our understanding of the 
pathogenesis of diabetes

(Chen, W et al., JCI, July, 2008)
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Association of rs563694 & fasting glucose*
Mean fasting glucose (mM) Effect Size

Study n CC AC AA (mM) p-value
GWA
FUSION stage I 1,233 5.26 5.31 5.33 0.051 8.0 x 10-4

SardiNIA 3,855 4.88 4.95 5.00 0.064 7.6 x 10-5

GWA meta analysis 3.5 x 10-7

Follow-up
FUSION stage II 655 5.28 5.44 5.46 0.068 2.0 x 10-3

Amish 1,655 4.90 4.89 5.03 0.090 4.1 x 10-5

METSIM 4,386 5.55 5.64 5.71 0.145 8.0 x 10-4

Follow-up meta analysis 8.0 x 10-4

Overall meta analysis 8.0 x 10-4

(Chen, W et al., JCI, July, 2008)
* In non-diabetic individuals
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Association of rs563694 & fasting glucose*
Mean fasting glucose (mM) Effect

Study n CC AC AA Size (mM) p-value
GWA
FUSION stage I 1,233 5.26 5.31 5.33 0.051 8.0 x 10-4

SardiNIA 3,855 4.88 4.95 5.00 0.064 7.6 x 10-5

GWA meta analysis 3.5 x 10-7

Follow-up
FUSION stage II 655 5.28 5.44 5.46 0.068 2.0 x 10-3

Amish 1,655 4.90 4.89 5.03 0.090 4.1 x 10-5

METSIM 4,386 5.55 5.64 5.71 0.145 1.3 x 10-10

Follow-up meta analysis 6.3 x 10-28

Overall meta analysis 6.1 x 10-35

Concluded that G6PC2, a glucose-6-phosphatase (expressed in pancreatic 
cells), may underlie variation in fasting glucose
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