8q24: Prostate Cancer

Matthew Freedman GAIN II October 18, 2007

Summary of LOD scores for 11 CaP linkage scans

Adapted from Schaid Hum Molec Genet 13:R103

History of prostate cancer genetics

Where Are the Prostate Cancer Genes?— A Summary of Eight Genome Wide Searches

Prostate. 2003 Dec 1;57(4):261-9.

Prostate cancer susceptibility genes: Many studies,
many results, no answersCancer Metastasis Rev. 2001;20(3-4):155-64.

REVIEW ARTICLE Genetics of Prostate Cancer: Too Many Loci, Too Few Genes

Am J Hum Genet. 2000 Dec;67(6):1367-75.

Outline

Whole genome admixture scan

- Fine mapping
- Work in progress

Established risk factors for prostate cancer

- Age
- Family history
- Ethnicity

Prostate cancer: epidemiology

SEER data – 1998-2002 age adjusted

Whole genome admixture scan

- Started 3 years ago
- Risk allele must be differentially distributed between ancestral populations

Can scan the genome with many fewer markers than for non-admixed pops

Prostate cancer is a strong candidate disease for admixture mapping

- Incidence rates in African-American men ~1.6 fold higher than European-Am men
- Epidemiologic evidence suggests that prostate cancer is even higher in African men
- Prostate cancer has one of the highest heritabilities out of all epithelial cancers
- No gene has been consistently identified

Admixture creates a mosaic

How does admixture mapping work?

Men with prostate cancer

The signal of admixture association

Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men

Matthew L. Freedman^{a,b,c}, Christopher A. Haiman^{c,d}, Nick Patterson^{b,c}, Gavin J. McDonald^{b,e}, Arti Tandon^{b,e}, Alicja Waliszewska^{b,e,f}, Kathryn Penney^b, Robert G. Steen^{e,g}, Kristin Ardlie^{b,h}, Esther M. John^{I,J}, Ingrid Oakley-Girvan^{I,J}, Alice S. Whittemore^J, Kathleen A. Cooney^{k,I}, Sue A. Ingles^d, David Altshuler^{b,e,m,n}, Brian E. Henderson^d, and David Reich^{b,e,o}

	Location	Cases	Controls	Cases % European ± 1 standard err.	Controls % European ±1 standard err.	mean age diagnosis (range)	% with Gleason score >7	% with non- local tumors	% with prostate cancer in a first degree relative	* Decrease in peak LOD if these samples are removed
Multiethnic Cohort	CA& HI	810	730	23.57 ± 0.50%	25.42 ± 0.57%	68 (46-85)	18%	15%	12%	2.58
L.A. County Men's Health Study	CA	366	107	22.34 ± 0.83%	26.37 ± 2.13%	63 (42-88)	28%	39%	21%	1.37
Study Early Onset Pros. Cancer	CA	104	-	20.89 ± 1.37%	-	60 (45-65)	31%	49%	14%	1.01
PCGP	MI	103	-	19.50 ± 1.01%	-	55 (40-86)	11%	29%	39%	1.15
Flint Men's Health Study	MI	85	-	18.05 ± 1.21%	-	65 (47-77)	12%	28%	15%	0.06
Bay Area Men's Health Study	CA	82	36	19.06 ± 1.52%	20.13 ± 2.15%	64 (44-78)	25%	94%	28%	1.16
Genomics Collaborative	All U.S.	47	-	16.16 ± 1.51%	-	62 (39-81)	14%	38%	28%	0.57
Combined samples		1,597	873	22.11 ± 0.36%	25.32 ± 0.55%	65 (39-88)	21%	29%	18%	7.14

Freedman et al., PNAS :14068 (2006)

A common variant associated with prostate cancer in European and African populations

Laufey T Amundadottir^{1,12}, Patrick Sulem^{1,12}, Julius Gudmundsson^{1,12}, Agnar Helgason¹, Adam Baker¹, Bjarni A Agnarsson², Asgeir Sigurdsson¹, Kristrun R Benediktsdottir², Jean-Baptiste Cazier¹, Jesus Sainz¹, Margret Jakobsdottir¹, Jelena Kostic¹, Droplaug N Magnusdottir¹, Shyamali Ghosh¹, Kari Agnarsson¹, Birgitta Birgisdottir¹, Louise Le Roux¹, Adalheidur Olafsdottir¹, Thorarinn Blondal¹, Margret Andresdottir¹, Olafia Svandis Gretarsdottir¹, Jon T Bergthorsson¹, Daniel Gudbjartsson¹, Arnaldur Gylfason¹, Gudmar Thorleifsson¹, Andrei Manolescu¹, Kristleifur Kristjansson¹, Gudmundur Geirsson³, Helgi Isaksson², Julie Douglas⁴, Jan-Erik Johansson⁵, Katarina Bälter⁶, Fredrik Wiklund⁶, James E Montie⁷, Xiaoying Yu⁸, Brian K Suarez⁹, Carole Ober¹⁰, Kathleen A Cooney^{7,11}, Henrik Gronberg⁶, William J Catalona⁸, Gudmundur V Einarsson³, Rosa B Barkardottir², Jeffrey R Gulcher¹, Augustine Kong¹, Unnur Thorsteinsdottir¹ & Kari Stefansson¹

Nature Genetics 38, 652 - 658 (2006)

Convergence of independent methods and data

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.	CEBP 16:610	
QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.	Cancer Res 67:2944	
QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.	Cancer Res 67:2951	
QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.	CEBP 16:1689	

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Outline

Whole genome admixture scan

Fine mapping

Work in progress

Ancestry is a proxy for the causal variant

Magnitude of association with CaP

Do deCODE variants fully explain ancestry risk in African American men?

Magnitude of association with CaP

Fine mapping identifies 3 regions contributing to PCa risk

7 alleles associated with CaP in a multiethnic cohort

Marker	African American	Japanese American	Native Hawaiians	Latinos	European Americans	Pooled OR
rs13254738	1.24	1.57	1.46	1.25	1.11	1.26
	(1.09-1.42)	(1.33-1.83)	(1.00-2.12)	(1.07-1.46)	(0.97-1.26)	(1.18-1.36)
rs6983561	1.34	1.78	3.17	1.99	1.16	1.51
	(1.18-1.53)	(1.47-2.15)	(1.87-5.36)	(1.34-2.96)	(0.86-1.58)	(1.37-1.67)
Broad11934905	2.45 (1.65-3.62)	-	-	-	-	2.45 (1.65-3.62)
rs6983267	1.43	1.22	1.29	1.05	1.13	1.18
	(1.17-1.75)	(1.05-1.42)	(0.88-1.89)	(0.89-1.24)	(0.99-1.28)	(1.09-1.27)
rs7000448	1.33	1.23	1.38	1.29	1.14	1.26
	(1.12-1.58)	(1.04-1.46)	(0.89-2.14)	(1.07-1.56)	(0.93-1.40)	(1.15-1.38)
DG8S737-8	1.25	1.48	2.55	1.46	1.45	1.39
	(1.06-1.49)	(1.16-1.88)	(1.33-4.89)	(1.05-2.02)	(0.96-2.19)	(1.23-1.57)
rs10090154	1.11	1.49	2.54	1.98	1.44	1.43
	(0.94-1.32)	(1.23-1.81)	(1.61-4.02)	(1.49-2.61)	(1.17-1.76)	(1.30-1.58)

Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24

Julius Gudmundsson^{1,17}, Patrick Sulem^{1,17}, Andrei Manolescu^{1,17}, Laufey T Amundadottir^{1,17},

Ed

^{Dani} Adar Genome-wide association study of prostate cancer ^{Thor} Jona Mari

Seba Meredith Yeager^{1,2}, Nick Orr³, Richard B Haves², Kevin B Jacobs⁴, Peter Kraft⁵, Sholom Wacholder²,

Gudt Bri Gudt Bri Willi De Augu Wa for prostate cancer

007

Da Christopher A Haiman¹, Nick Patterson², Matthew L Freedman^{2,3}, Simon R Myers², Malcolm C Pike¹, Alicja Waliszewska^{2,4,5}, Julie Neubauer^{2,4}, Arti Tandon^{2,4}, Christine Schirmer^{2,4}, Gavin J McDonald^{2,4}, Steven C Greenway⁴, Daniel O Stram¹, Loic Le Marchand⁶, Laurence N Kolonel⁶, Melissa Frasco¹, David Wong¹, Loreall C Pooler¹, Kristin Ardlie^{2,7}, Ingrid Oakley-Girvan^{8,9}, Alice S Whittemore⁹, Kathleen A Cooney^{10,11}, Esther M John^{8,9}, Sue A Ingles¹, David Altshuler^{2,4,12,13}, Brian E Henderson¹ & David Reich^{2,4}

Summary: Fine mapping

- Multiple alleles contributing risk in a noncoding region
 Population attributable risk is large across populations
- Power of studying multiple ethnicities
- Most risk alleles are shared across populations (although this is also what we are most powered for)
- MYC is closest gene

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Nature Genetics 39:989

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Nature Genetics 39:984

QuickTime[™] and a TIFF (Uncompressed) decompressor

Nature Genetics 39:984

Outline

- Whole genome admixture scan
- Fine mapping
- Work in progress

Now what??

Sequencing - ascertain all variation across three regions

■ N=48 - across 3 ethnic groups

Newly discovered and poorly tagged variants will be tested in larger multiethnic cohort

What is the mechanism of risk?

- Possible hypotheses
 - structurally unstable
 - unannotated transcript
 - tiling arrays
 - promoter/enhancer
 - tiling arrays
 - chromatin markers

Hypothesis: structural instability

Are the 8q24 risk alleles associated with somatic 8q amplification?

Being performed on 140 paired normal/tumor samples from the DFCI/Gelb center

Tiling arrays DSC - Ben Berman, Chris Haiman, Gerry Coetzee DFC - Jerome Eekhoute, Mathieu Lapien, Mark Pomerantz, Myles Brown array that "tiles" oligos across a given region so that it can be interrogated at ultra-high resolution Genomic DNA S^T S^T S^T S^T S^T S^T

we tiled a 5 megabase region at 8q24 with a mean probe spacing of 8bp

Analyzed cDNA and acetylation

probes

Blow-up of region - MYC

Transcriptional landscape of 8q24

New transcripts in risk region

Chromatin markers:epigenetics

Table 1 | Chromatin modifications

Mark*	Transcriptionally relevant sites†	Transcriptional role‡	
DNA methylation			
Methylated cytosine (meC)	CpG islands	Repression	
Histone PTMs			
Acetylated lysine (Kac)	H3 (9, 14, 18, 56), H4 (5, 8, 13, 16), H2A, H2B	Activation	
Phosphorylated serine/ threonine (S/Tph)	H3 (3, 10, 28), H2A, H2B	Activation	
Methylated arginine (Rme)	H3 (17, 23), H4 (3)	Activation	
Methylated lysine (Kme)	H3 (4, 36, 79) H3 (9, 27), H4 (20)	Activation Repression	
Ubiquitylated lysine (Kub)	H2B (123\$/120¶) H2A (119¶)	Activation Repression	
Sumoylated lysine (Ksu)	H2B (6/7), H2A (126)	Repression	
Isomerized proline (Pisom)	H3 (30-38)	Activation/ repression	
*The modification on either DNA †Well-characterized sites with re histones for PTMs. ‡Whether the epigenetic mark is §Yeast (<i>Saccharomyces cerevisiae</i> ¶Mammals.	A or a histone. egard to genomic location for [NA methylatio s associated with activation or epression. e).	n or residues within	

Nature 447:407

Active chromatin

Promoter/enhancer

8q24 regions are bear marks of enhancers Jerome Eekhoute and Mathieu Lupien

Future directions: what is the region enhancing?

- How is 8q24 influencing expression?
 Directed
 - 12 transcripts
 - 150 histologically normal prostate samples
 - Unbiased
 - Chromosome
 Conformation
 Capture

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Acknowledgements

Harvard/Broad David Reich Nick Patterson Simon Myers Julie Neubauer Christine Schirmer Arti Tandon Gavin McDonald Neil Hattangadi Alicja Waliszewska Kristin Ardlie David Altshuler

<u>University of Hawaii</u> Laurence Kolonel Loic LeMarchand DFCI Mark Pomerantz Kathryn Penney Christine Beckwith Phil Kantoff Oliver Sartor William Oh Jerome Eekhoute Mathieu Lupien **Myles Brown**

<u>CPDR</u> David McLeod Shiv Srivastava Albert Dobi Jennifer Cullen <u>Stanford</u> Alice Whittemore

<u>NCCC</u> Ingrid Oakley-Givran Esther John

<u>University of Michigan</u> Kathy Cooney

<u>USC</u> Brian Henderson Chris Haiman Dan Stram Sue Ingles Malcolm Pike

8q24 variants and clinical parameters

Kathryn Penney and Mark Pomerantz

	PHS	DFCI aggressive	DFCI RP	
	(n=598)	(n=762)	(n=500)	
Age at diagnosis	(n=598)	(n=734)	(n=459)	
(mean)	68.5	62.2	56.7	
PCa deaths/long term survivors	156/396	277/168		
Gleason score	(n=490)	(n=684)	(n=460)	
<7	51.4	17.8	41.5	
7	32.9	32.7	51.1	
>7	15.7	49.4	7.4	
PSA at diagnosis*	(n=221)	(n=414)	(n=426)	
(median)	9.1	11.0	5.0	
Pathologic stage			(n=454)	
T1-T2			85.9	
T3-T4			14.1	

*PSA at diagnosis does not include individuals who were diagnosed with metastases

8q24 and PCa mortality

Kathryn Penney and Mark Pomerantz

N=433 PCa deaths and N=564 > 10 year survivors Adjusted for age at diagnosis and cohort