Combining Data from Different Genotyping Platforms

Gonçalo Abecasis
Center for Statistical Genetics
University of Michigan
The Challenge

- Detecting small effects requires very large sample sizes

- Combined analysis of data from different studies is one way to increase sample size …

- … but these studies may rely on different platforms that have little direct overlap
 - For example, Illumina 317K chip and the Affymetrix 500K chip have only ~51,000 SNPs in common
My Talk Today

- **In silico genotyping**
 - Inferring unobserved genotypes

- Estimate genotypes for relatives of individuals in genome-wide association scan
 - Intuition for how in silico genotyping works

- Estimate genotypes for untyped markers, by combining study sample with Hapmap
 - Facilitate comparisons across studies

- Evaluating quality of the inferred genotypes
In Silico Genotyping For Family Samples

- Family members will share large segments of chromosomes.

- If we genotype many related individuals, we will effectively be genotyping a few chromosomes many times.

- In fact, we can:
 - genotype a few markers on all individuals
 - use high-density panel to genotype a few individuals
 - infer shared segments and then estimate the missing genotypes
 - if relatives have no genotype data, we can still estimate a probability for each of their genotypes
Genotype Inference
Part 1 – Observed Genotype Data
Genotype Inference
Part 2 – Inferring Allele Sharing
Genotype Inference
Part 3 – Imputing Missing Genotypes
Our Approach

- Consider full set of observed genotypes G

- Evaluate pedigree likelihood L for each possible value of each missing genotype g_{ij}

- Posterior probability for each missing genotype

$$P(g_{ij} = x \mid G) = \frac{L(G, g_{ij} = x)}{L(G)}$$

- Implemented both using Elston-Stewart (1972) and Lander-Green (1987) algorithms
Model With Inferred Genotypes

- Replace genotype score g with its expected value:
 \[E(y_i) = \mu + \beta_g \bar{g} + \beta_c c + \ldots \]
- Where
 \[\bar{g}_i = 2P(g_i = 2 | G) + P(g_i = 1 | G) \]
- Association test can then be implemented as a score test or as a likelihood ratio test
- Alternatives would be to
 - (a) impute genotypes with large posterior probabilities; or
 - (b) integrate joint distribution of unobserved genotypes in family
Sardinia

- 6,148 Sardinians from 4 towns in Ogliastra
- Measured 98 aging related quantitative traits

Genotyping:
- Affymetrix 10K chip in 4,500 individuals (done)
- Affymetrix 500K chip in 1,500 individuals (ongoing)

Large pedigrees, computationally challenging
- Preliminary results
Preliminary Results from Sardinia

Red Blood Cell Hemoglobin Levels

β-globin

α-globin
Preliminary Results from Sardinia
QT interval, Chromosome 1

Before imputation

After imputation

Position (in Mb) Along Chromosome 1
Preliminary Results from Sardinia

QT interval, Chromosome 1

-\log(p\text{-value})

Position (in Mb) Along Chromosome 1

Before imputation

After imputation

Imputation increases signal at NOS1AP increases from \sim 0.005 (top 3000 SNPs) to \sim 10^{-4} (top 25 SNPs)
In families, we expected relatively long stretches of shared chromosome.

In unrelated individuals, these stretches will typically be much shorter.

The plan is still to identify stretches of shared chromosome between individuals…

… we then infer intervening genotypes by contrasting study samples with densely typed HapMap samples.
Observed Genotypes

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>G</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>C</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Reference haplotypes

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>G</td>
<td>T</td>
</tr>
<tr>
<td>C</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>G</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>G</td>
</tr>
<tr>
<td>C</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>G</td>
<td>T</td>
<td>C</td>
<td>T</td>
</tr>
<tr>
<td>C</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>G</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>G</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>G</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>C</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>C</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>G</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>T</td>
</tr>
<tr>
<td>C</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>G</td>
<td>T</td>
</tr>
</tbody>
</table>
Identify Match Among Reference

Observed Genotypes

\[\ldots \ldots A \ldots \ldots A\]
\[\ldots \ldots G \ldots \ldots A\]

Reference Ha plotypes

\[
\begin{array}{cccccccccccc}
C & G & A & G & A & T & C & T & C & C & T & T & C & T & T & C & T & G & T & G & C \\
C & C & A & A & G & C & T & C & T & T & T & T & C & T & T & C & T & G & T & G & C \\
C & G & A & A & G & C & T & C & T & T & T & C & T & T & C & T & C & T & G & T & G & C \\
T & G & G & G & A & T & C & T & C & C & C & G & A & C & C & T & C & A & T & G & G \\
C & G & A & A & G & A & T & C & T & C & T & T & T & T & C & T & T & T & T & G & T & A & C \\
C & G & A & C & T & C & C & G & A & C & C & T & C & T & C & G & T & G & C \\
C & G & A & A & G & C & T & C & T & T & T & T & C & T & T & C & T & G & T & G & C
\end{array}
\]
Phase Chromosome, Impute Missing Genotypes

Observed Genotypes

c g a g A t c t c c c g A c c t c A t g g

c g a a G c t c t t t t C t t t c A t g g

Reference Haplotypes

C G A G A T C T C C T T T C T T C T G T G C
C G A G A T C T C C C G A C C T C A T G G
C C A A G C T C T T T T C T T C T G T G C
C G A A G C T C T T T T C T T C T G T G C
C G A G A C T C T C C G A C C T T A T G C
T G G G A T C T C C C G A C C T C A T G G
C G A G A T C T C C C G A C C T T G T G C
C G A A G A C T C T T T T C T T T G T A C
C G A G A A C T C T C C G A C C T C G T G C
C G A G A G C T C T T T T T C C T G T G C

C G A A G C T C T T T T T C T G T G C
Implementation

- Markov model is used to model each haplotype, conditional on all others

- Gibbs sampler is used to estimate parameters and update haplotypes
 - Each individual is updated conditional on all others
 - In parallel to updating haplotypes, estimate “error rates” and “crossover” probabilities

- In theory, this should be very close to the Li and Stephens (2002) model
Output of Imputation Runs...

<table>
<thead>
<tr>
<th>g</th>
<th>A</th>
<th>c</th>
<th>c</th>
<th>t</th>
<th>c</th>
<th>A</th>
<th>t</th>
<th>g</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>C</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>c</td>
<td>A</td>
<td>t</td>
<td>g</td>
<td>g</td>
</tr>
</tbody>
</table>

Iteration 1

<table>
<thead>
<tr>
<th>g</th>
<th>A</th>
<th>c</th>
<th>c</th>
<th>t</th>
<th>c</th>
<th>A</th>
<th>t</th>
<th>g</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>C</td>
<td>c</td>
<td>c</td>
<td>t</td>
<td>c</td>
<td>A</td>
<td>t</td>
<td>g</td>
<td>c</td>
</tr>
</tbody>
</table>

Iteration 2

<table>
<thead>
<tr>
<th>g</th>
<th>A</th>
<th>c</th>
<th>c</th>
<th>t</th>
<th>c</th>
<th>A</th>
<th>t</th>
<th>g</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>C</td>
<td>c</td>
<td>c</td>
<td>t</td>
<td>c</td>
<td>A</td>
<td>t</td>
<td>g</td>
<td>c</td>
</tr>
</tbody>
</table>

Iteration 3

<table>
<thead>
<tr>
<th>g</th>
<th>A</th>
<th>c</th>
<th>c</th>
<th>t</th>
<th>c</th>
<th>A</th>
<th>t</th>
<th>g</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>C</td>
<td>c</td>
<td>c</td>
<td>t</td>
<td>c</td>
<td>A</td>
<td>t</td>
<td>g</td>
<td>c</td>
</tr>
</tbody>
</table>

Iteration 4

<table>
<thead>
<tr>
<th>g</th>
<th>A</th>
<th>c</th>
<th>c</th>
<th>t</th>
<th>c</th>
<th>A</th>
<th>t</th>
<th>g</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>C</td>
<td>c</td>
<td>c</td>
<td>t</td>
<td>c</td>
<td>A</td>
<td>t</td>
<td>g</td>
<td>c</td>
</tr>
</tbody>
</table>

"Best Call"

<table>
<thead>
<tr>
<th>Quality Score</th>
<th>Reference Allele</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 3/4 3/4</td>
<td>1 1 1 1 1 1</td>
<td>3/4</td>
</tr>
<tr>
<td>1 1 7/4 7/4</td>
<td>2 2 2 2 2</td>
<td>5/4</td>
</tr>
</tbody>
</table>
Assessing the Approach: AMD Case Control Study

- Used 11 tag SNPs to predict 84 SNPs in CFH

- Predicted genotypes differ from original ~1.8% of the time
 - ~2.5% for PHASE
 - ~3.2% for fastPHASE

- Calculation took ~3 minutes
 - ~21min for fastPHASE
 - ~1 day for PHASE
FUSION Example

- Finland United States Investigation of NIDDM Genetics

- Genome-wide association scan in 1200 type II diabetes cases and 1200 controls
 - Imputed 2.5M SNPs for all individuals
 - ~1 week, 50 CPUs

- Genotyping carried out using the Illumina 317K chip
 - To start, I will focus on 127 SNPs around TCF7L2
 - There are 984 Hapmap SNPs in the same interval
FUSION: TCF7L2

Association Around TCF7L2

Chi-squared vs. Chr 10 Position (Mb)

- Imputed Data
- Observed Data
Association Around TCF7L2

FUSION: TCF7L2

rs7903146
rs12255372
rs12243326

Chi-squared

Chr 10 Position (Mb)
FUSION TCF7L2 region. Estimated error rate, at each marker, based on similarity between haplotypes estimated at each iteration. Overall average is just under 3.0%. “Crossover” rates are averaged over Gibbs sampler iterations.
More Thorough Assessment

- Prior to genome-wide association scan
 - FUSION examined 20Mb region on chromosome 14
 - A candidate region that shows evidence for linkage

- The original genotype data
 - 1190 individuals
 - 521 markers not on Illumina HumanHap300 chip

- The imputed genotyped data
 - ~17,000 genotypes using ~2,000 GWA markers
 - ~1.5 days in a one CPU
Do the imputed alleles match?

- 1.5% of alleles mismatch original
 - 3.0% of genotypes mismatch original

- Errors are concentrated on a few markers
 - 14.82% error for 1% of SNPs with lowest quality scores
 - 11.09% error for next 1% of SNPs (1st – 2nd percentile)
 - 5.86% error for next 1% of SNPs (2nd – 3rd percentile)
 - 1.11% error for top 95% of SNPs
Predicted and Actual Error Rates

Top panel shows actual error rate (imputed vs. actual genotypes)
Bottom panel shows estimated error rate
Does Coverage Improve?

1. R^2 in FUSION with Best Tag in HapMap
2. R^2 in HapMap with Best Tag in HapMap
3. R^2 with (Best-Guess) Imputed Genotypes
4. Squared Allele Dosage Correlation

* e.g., Imputed genotypes over 5 rounds:

 1/1 1/1 1/2 1/1 1/1

 \Rightarrow (Best-Guess) imputed genotype: **1/1**

 \Rightarrow Dosage for allele 1: **1.8**
Coverage Comparison (r^2)
521 chromosome 14 SNPs

- **R² in FUSION with Best Tag in HapMap**
 - Mean = 0.78
 - Median = 0.89
 - STD = 0.26
 - Coverage = 62%

- **R² in HapMap with Best Tag in HapMap**
 - Mean = 0.81
 - Median = 0.90
 - STD = 0.24
 - Coverage = 66%

- **R² in FUSION with Imputed Genotype**
 - Mean = 0.90
 - Median = 0.96
 - STD = 0.16
 - Coverage = 83%

- **R² in FUSION with Imputed Allele Dose**
 - Mean = 0.91
 - Median = 0.96
 - STD = 0.14
 - Coverage = 87%
Can we recover original test statistics?

- Chi-squared test statistic in original data
- Chi-squared test statistic for best tag
- Chi-squared test statistic for best 2-SNP tag
- Chi-squared test statistic for imputed alleles
- Chi-squared test statistics for allele doses

- Compare each of these 4 to original statistic
Test Statistic Comparison

Original

Test using Best Tag
corr = 0.7699

Test using 2-SNP Tags

Single-Marker Tag
PLINK 2-Marker Tag
corr = 0.8184

Original

Test using Imputed Genotypes
corr = 0.8912

Test using Allele Doses
corr = 0.8979
Can we do even better?

- Ask a better statistician?
 - Jonathan Marchini / Peter Donnelly
 - Matthew Stephens
 - Mark Daly / Paul de Bakker
 - Many more?
Can we do even better?

- Ask a better statistician?

- Collect more data?
 - Genotype study samples on two platforms
 - 60 individuals in overlap, 1.78% error rate per allele
 - 100 individuals in overlap, 1.03% error rate
 - 200 individuals in overlap, 0.78% error rate
 - 500 individuals in overlap, 0.41% error rate
 - Maybe we could use a larger HapMap?
Summary

- It is possible to combine data across studies that rely on different platforms
 - Will add value to genome wide scans
- My (currently) favorite way is to impute missing genotypes
- A lot of interesting statistical and computational problems
Acknowledgements

- Yun Li, Paul Scheet, Jun Ding, Weimin Chen, Serena Sanna

- FUSION Investigators, led by:
 - Karen Mohlke, Mike Boehnke, Francis Collins, Jaakko Tuomilehto, Richard Bergman

- Sardinia Investigators, led by:
 - David Schlessinger, Manuela Uda, Antonio Cao, Edward Lakatta, Paul Costa

goncalo@umich.edu
Comparison With Phase

Computation Time for this Dataset:

- **Mach 1.0**: ~3 sec per round.
- **PHASE**: ~10h in total.
Mathematical Model

- Markov model, where each haplotype is a mosaic of other “known” haplotypes
- The probability of a particular arrangement depends on number of change-over points

\[
\Pr(S = s) = \Pr(S_1 = s_1, \ldots, S_L = s_L) = \Pr(S_1 = s_1) \prod_{j=1}^{L-1} \Pr(S_{j+1} = s_{j+1} \mid S_j = s_j)
\]

- For a specific arrangement of the mosaic, calculate probability of observed alleles

\[
\Pr(A = a \mid S = s) = \Pr(A_1 = a_1, \ldots, A_L = a_L \mid S_1 = s_1, \ldots, S_L = s_L) = \prod_{j=1}^{L} \Pr(A_j = a_j \mid E_j(s_j))
\]