The Challenge – Maximizing the value of four different genetic studies of diabetes or diabetic complications

- FIND Family Investigation of Nephropathy and Diabetes
- GoKinD Genetics of Kidneys in Diabetes
- EDIC Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications Study (EDIC)
- Type 1 Diabetes Genetics Consortium

The Family Investigation of Nephropathy and Diabetes (FIND) Study

Objectives

- To utilize state-of-the-art genetic technology to identify genes for Diabetic Nephropathy
 - A linkage study using diabetic relative pairs concordant or discordant for diabetic nephropathy. All probands have biopsy-proved nephropathy and/or overt proteinuria (or ESRD)
 - MALD, which uses markers with different allele frequency distributions in two founding populations of an admixed population as a tool for genome-wide mapping of susceptibility loci for both diabetic and non-diabetic kidney disease.

Number of Participants

Family study – recruitment completed

		Families	Individuals
African American		399	1169
American Indian		264	1144
European American		222	706
Mexican American		561	2258
Other Hispanic American		11	29
Other		5	18
	Total Recruited	1462	5314

MALD study – recruitment to end in fall 2006

Mexican-Americans - 841 cases, 452 hypernormal controls

African-Americans - 278 diabetic nephropathy diads and triads, 478 nondiabetics diads and triads, 77 hypernormal controls

OVERALL GOALS

The overall goal of the GoKinD ("Genetics of Kidneys in Diabetes") study is to establish a repository of DNA and clinical information from a large number of unrelated patients with type 1 diabetes in order to facilitate studies into the genetic basis of diabetic nephropathy. All probands (and cases) have overt proteinuria or ESRD.

Enrollment (July, 2005)

TOTAL

Case Trio Probands:	271/600
Case Singletons:	674/500
Total Cases:	945/1100
Control Trio Probands:	324/500
Control Singletons:	620/500
Total Controls:	944/1000
Total Probands:	1889/210

DNA and associated data are now available by application for all subjects See www.gokind.org

Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications Study (EDIC)

- The DCCT demonstrated the efficacy of glycemic control for slowing the onset and progression of eye, kidney, and nerve diabetic complications.
- In 1994, 96% of the participants were enrolled in EDIC for regular observational follow-up of metabolic and complications status, using similar methods as in the DCCT.
- The goal of the EDIC Genetics substudy is to collect DNA, cells, serum and plasma on all available parents and at least one non-diabetic sib and measure diabetic complications on diabetic siblings

Current collection (as of 2005)

- 1,419 DCCT/EDIC probands
- 2,960 relatives of DCCT/EDIC probands
 - 806 mothers
 - 582 fathers
 - 1,572 siblings
 - Of which 140 have diabetes and complications measured
- 4,379 individuals in total

Type 1 Diabetes Genetics Consortium

The goal of the Type 1 Diabetes Genetics Consortium is to organize international efforts to identify genes that determine an individual's risk of type 1 diabetes, and to establish a renewable source of DNA on 2500 families with at least two type 1 diabetic children, one non-diabetic child and two parents. Enrollment

DNA and data soon available see www.t1dgc.org

RFA-DK-06-005

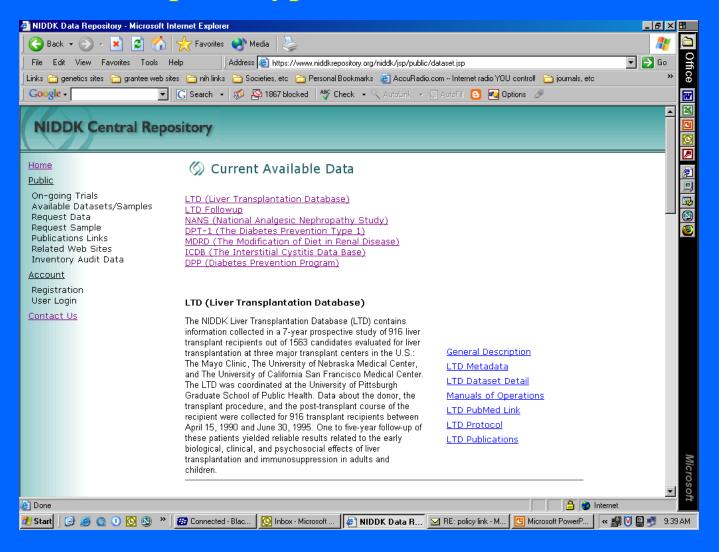
High-Density Genotyping of Diabetes and Diabetic Complications Sample Collections

• Will support high-density genotyping of the EDIC and GoKIND collections.

•Genotyping data will be stored in an NIDDK repository and shared with the research community one year after it is generated.

•The participating Institutes (NIDDK, NHLBI, NIAID) will award up to \$3.0 million for the first year and \$2M for each of 2 additional years.

•Genotyping costs are NOT included. Genotyping will be funded separately through direct NIDDK contracts


•Applications have already been received.

•Next year, a similar RFA will support genotyping of all 4 studies

Challenges in receiving and repositing data

- 1. Need expertise in acquiring massive amounts of SNP genotype data
- 2. Need system to link SNP data to associated genomic data
- 3. Need way to link seamlessly to phenotypic databases that are complex and often have many versions
- 4. Need to actively maintain phenotypic databases to assist investigators unfamiliar with the datasets
- 5. Need to facilitate cross-study comparisons

The NIDDK Central Database Repository will house the phenotypic data to be shared

Challenges with data heterogeneity

	Study (variable #s)					
	FIND	GOKIND	T1DGC	EDIC		
Lab Test						
AutoAb GAD65	18, 24, 25		206 to 210			
AutoAb IA-2			211 to 215			
Genotyped	9					
HbA1C (%)	27	28,35		(yes)		
Serum creatinine (mg/dL)	28	38, 43, 44, 45, 24, 36, 37, 38		yes		
BUN (mg/dL)	29					
Urine total protein (mg/dL)	30, 38					
Urine albumin (Medstar-mg/L and Steffes mg/dL)	31, 39	yes (0 to 3 times)				
Urine creatinine (mg/dL)	32, 40	yes (0 to 3 times)		yes		
Glucose (mg/dL)	33					
Albumin/creatinine	35, 41	21 (0 to 3 times)		yes		
Urine protein/creatinine	36, 42					
Kidney biopsy	83, 84, 169 to 182					
Biopsy						
ACR/AER		31, 32, 33				
AER		yes (RASS)		(yes)		
lipid cholesterol		25, 36		(yes)		
lipid HDL		26, 37		(yes)		
lipid LDL				(yes)		
LDL/HDL				(yes)		
Hyperlipidemia				(yes)		
Serum cystatin		27, 39		yes		
GFR	34			yes		
GFR1 (MDRD; (ml/min/1.73m2))		yes				
GFR2 (Cockcroft-Gault)		yes				
GFR3 (1/serum creatinine)		yes				
Trigylcerides				yes		

Summary

Even when projects are studying the same phenotype, it may be difficult to compare subjects from different studies

The requirements for storing SNP data are different from those for storing phenotypic data

The complexity of phenotypic data may be a barrier for phenotype nonspecialists