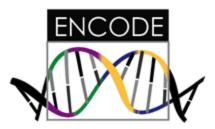

Charting human epigenomes:

Shedding light on the genome's 'dark matter'

Brad Bernstein

MASSACHUSETTS GENERAL HOSPITAL

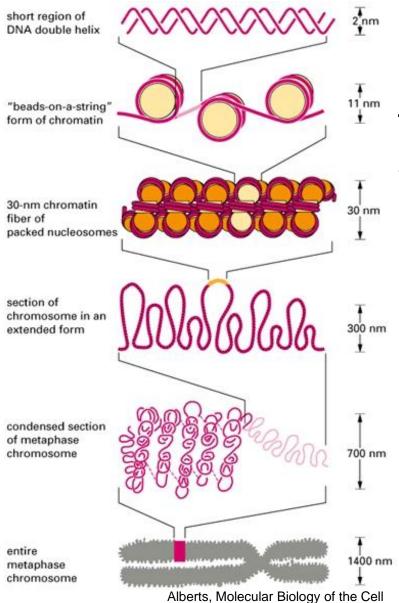

MEDICAL SCHOOL

IUGHES MEDICAL INSTITUTE

HHMI

Charting human epigenomes

1. Epigenomic features and mapping technologies


2. NIH Epigenome Mapping Centers

'Reference epigenomes distinguish developmental stage & lineage'

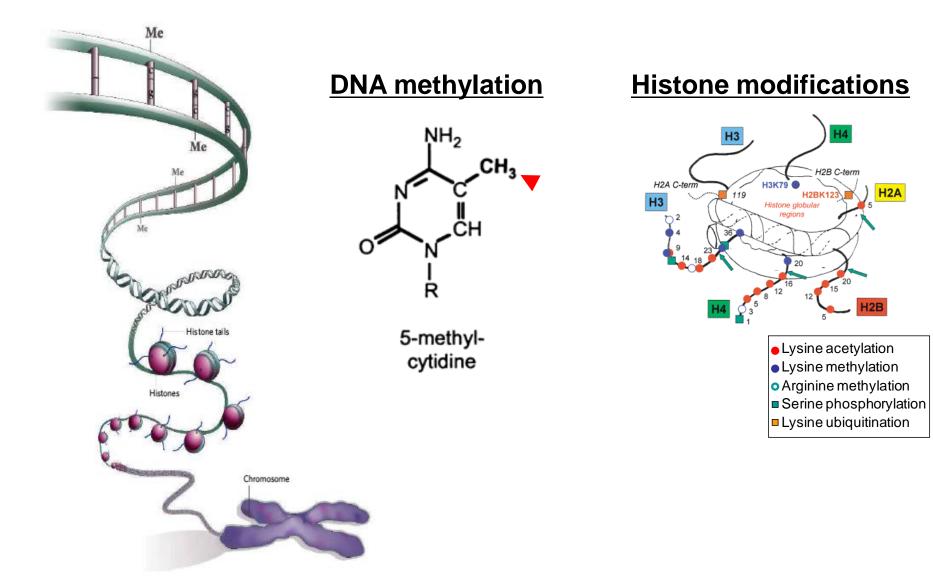
3. ENCODE Project

'Beyond the genes: shedding light on the genome's dark matter'

3 billion base pairs of DNA

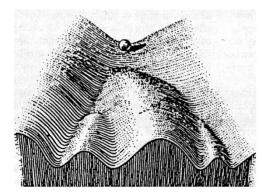
Two meters of DNA in a nucleus smaller than of the head of a pin

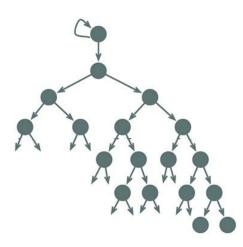
Genes and DNA elements in 'open' chromatin

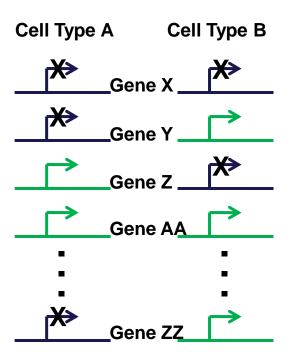

Nucleus

Chromosome (polytene)

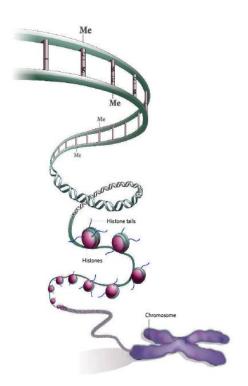
nuclear envelope peripheral heterochromatin silver grains Open chromatin, 2 um transcribed gene Active/transcribed Compact


Genes and control elements are accessible to RNA polymerase and other regulatory proteins


Chemical 'tags' underlie chromatin organization

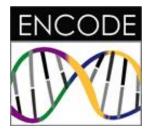

Epigenetic regulation of development

Development & Lineage-Specification



Cell Type-Specific Gene Expression Programs

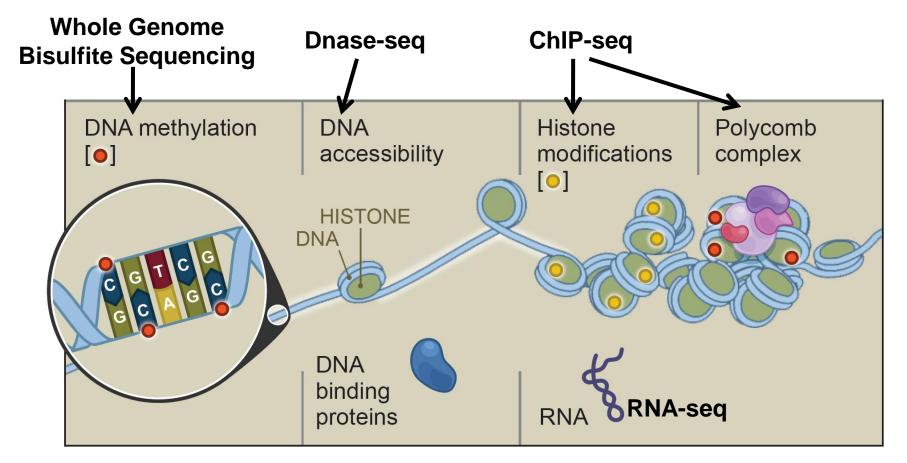
Chromatin Structure & the Epigenome



Epigenomics of human disease

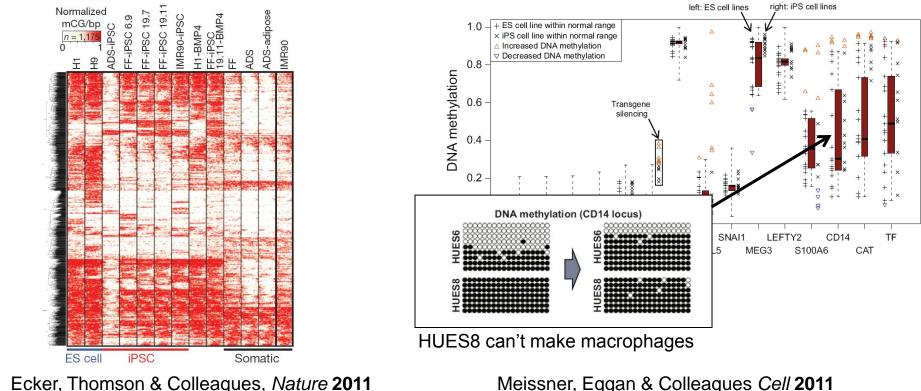
- <u>Cancer</u> is a genetic and epigenetic disease
 - Aberrant DNA methylation is a hallmark
 - Prevalent <u>mutations in wide range of chromatin enzymes</u>
- Neuropsychiatric, metabolic, developmental disorders
 - Mutations in chromatin regulators (MeCP2), aberrant epigenetics
 - Long-term consequences of early environmental exposures
- Functional annotation encoded in epigenome vital to understand how genotype gives rise to phenotype in <u>any tissue or disease</u>

Urgent need for <u>reference human epigenomes</u> and <u>toolkits</u> to enable disease researchers to characterize and understand these defects



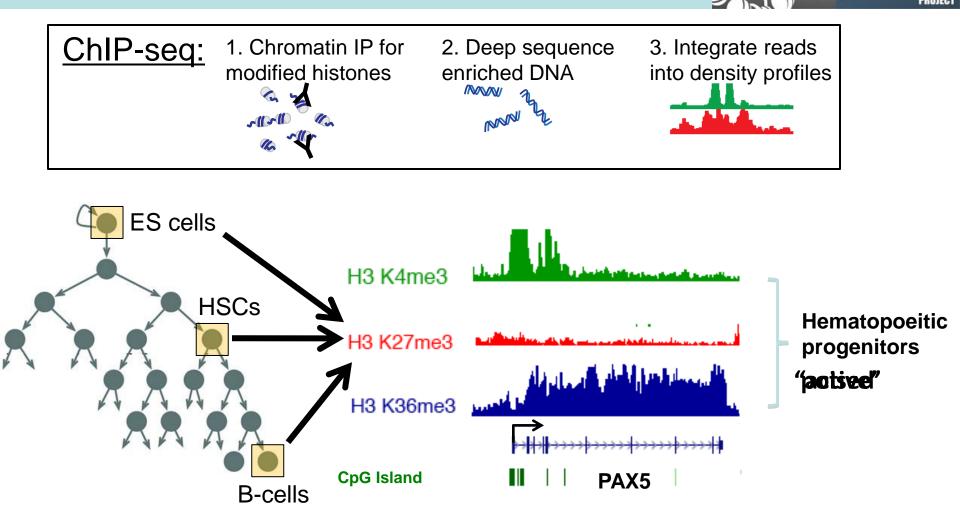
Genome-wide maps of epigenomic features

Next-generation sequencing has *transformed* epigenomics research


But many challenges: direct mC detection, single cell analysis, tissues, etc

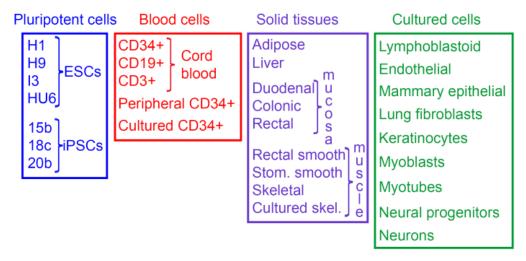
Methylomes of pluripotent stem cells

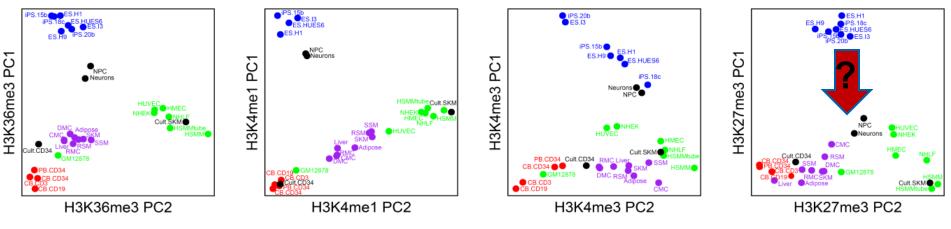
1. Whole methylomes for ES cells by bisulfite sequencing (Lister et al, Nature 2009)


ACT^mCGT \Box ATTCGT \Box Deep sequence (20x genome coverage)

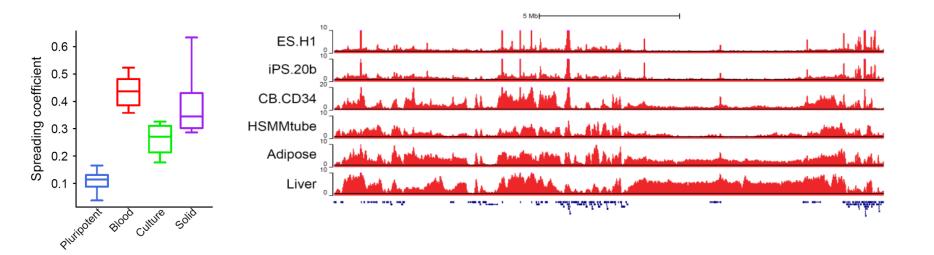
2. Epigenomic defects in iPSCs 3. Epigenome-> developmental potential

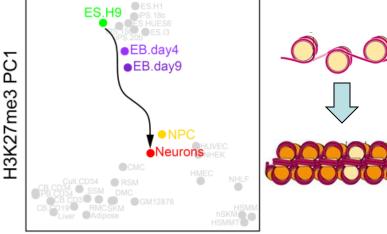
Ecker, Thomson & Colleagues, Nature 2011


Mapping histone modifications


ADMAP

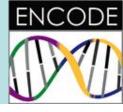
Epigenomes and cell phenotypes

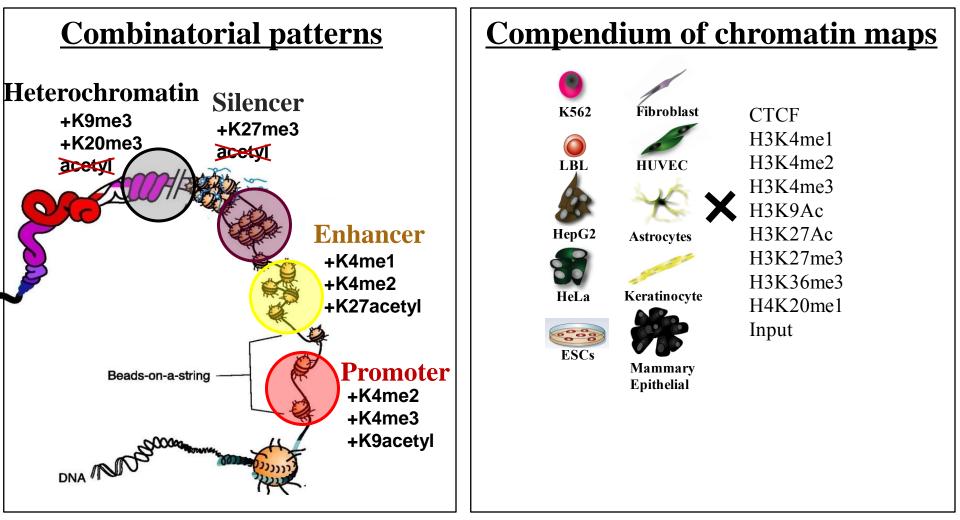



Principle component analysis (PCA)

Jiang Zhu, Mazhar Adli, Noam Shoresh, Chuck Epstein, Xiaolan Zhang (Broad/MGH)

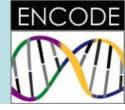
Large domains of repressive chromatin formed during lineage-commitment





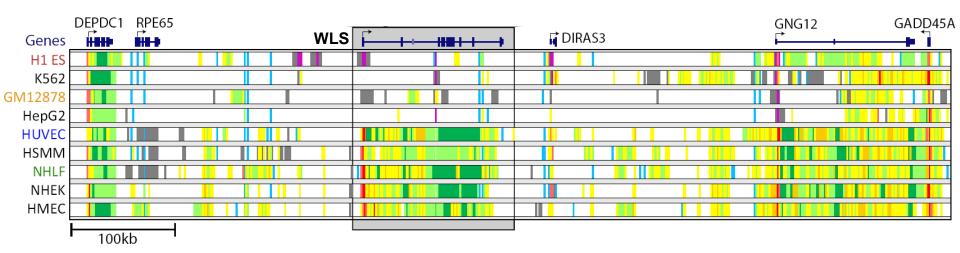
- Epigenome mapping centers highlight prominent role of epigenetic repression in lineage-restriction
- Rich resource for development, regenerative medicine and disease research

H3K27me3 PC2

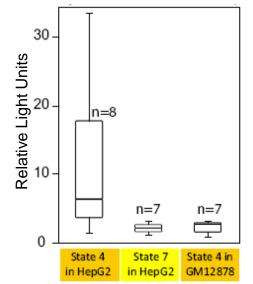

Signature histone modification patterns identify non-coding DNA elements

Jason Ernst, Manolis Kellis, Pouya Kheradpour, Tarjei Mikkelsen, Noam Shoresh, Tim Durham Chuck Epstein, Xiaolan Zhang, Mike Coyne, Li Wang, Robbyn Issner, Luke Ward, Manching Ku

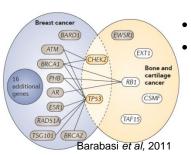
Genome annotation by chromatin state


- Learn recurrent modification patterns or 'states' by HMM
- Annotate genome by chromatin states -> enhancers, other elements

	State	CTCF	H3K27me3	H3K36me3	H4K20me1	H3K4me1	H3K4me2	H3K4me3	H3K27ac	H3K9ac	WCE	Median	H1 ES	ge WD	Median Length	+/-2kb TSS	Conserved non-exon	DNase (K562)	C-Myc (K562)	NF-kB (GM12878)	Transcript	Nuclear Lamin (NHLF)	Candidate state annotation
S	1	16	2	2	6	17	93	99	96	98	2	0.6	0.5	1.2	1.0	83	3.8	23.3	82.0	40.7	0.2	0.15	Active Promoter
States	2	12	2	6	9	53	94	95	14	44	1	0.5	1.2	1.3	0.4	58	2.8	15.3	12.6	5.8	0.6	0.30	Weak Promoter
ta	3	13	72	0	9	48	78	49	1	10	1	0.2	4.0	1.0	0.6	49	4.3	10.8	3.1	1.0	0.4	0.68	Inactive/poised Promoter
	4	11	1	15	11	96	99	75	97	86	4	0.7	0.1	1.1	0.6	23	2.7	23.1	31.8	49.0	1.3	0.05	Strong enhancer
Chromatin	5	5	0	10	3	88	57	5	84	25	1	1.2	0.2	0.7	0.6	3	1.8	13.6	6.3	15.8	1.4	0.10	Strong enhancer
at	6	7	1	1	3	58	75	8	6	5	1	0.9	1.3	1.0	0.2	17	2.4	11.9	5.7	7.0	1.1	0.31	Weak/poised enhancer
E	7	2	1	2	1	56	3	0	6	2	1	1.9	1.2	1.1	0.4	4	1.5	5.1	0.6	2.4	1.3	0.20	Weak/poised enhancer
2	8	92	2	1	3	6	3	0	0	1	1	0.5	1.4	1.0	0.4	3	1.5	12.8	2.5	1.2	1.1	0.61	Insulator
S	9	5	0	43	43	37	11	2	9	4	1	0.7	1.3	1.0	0.8	4	1.1	4.5	0.7	0.8	2.4	0.02	Transcriptional transition
	10	1	0	47	3	0	0	0	0	0	1	4.3	0.6	1.2	3.0	1	0.9	0.3	0.0	0.0	2.5	0.11	Transcriptional elongation
	11	0	0	3	2	0	0	0	0	0	0	12.	5 1.3	0.8	2.6	2	0.9	0.3	0.0	0.1	1.9	0.24	Weak transcribed
	12	1	27	0	2	0	0	0	0	0	0	4.1	0.3	0.7	2.8	5	1.4	0.3	0.0	0.1	0.8	0.63	Polycomb-repressed
	13	0	0	0	0	0	0	0	0	0	0	71.	4 1.0	1.0	10.0	1	0.9	0.1	0.0	0.0	0.7	1.30	Heterochrom; low signal
	14	22	28	19	41	6	5	26	5	13	37	0.1	0.9	1.2	0.6	3	0.4	1.9	0.3	0.2	0.4	1.44	Repetitive/CNV
-	15	85	85	91	88	76	77	91	73	85	78	0.1	0.9	1.0	0.2	1	0.2	5.9	9.5	7.4	0.4	1.30	Repetitive/CNV

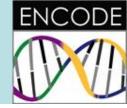

~180 ChIP-seq exps ~2.4 billion reads ~100 billion bases

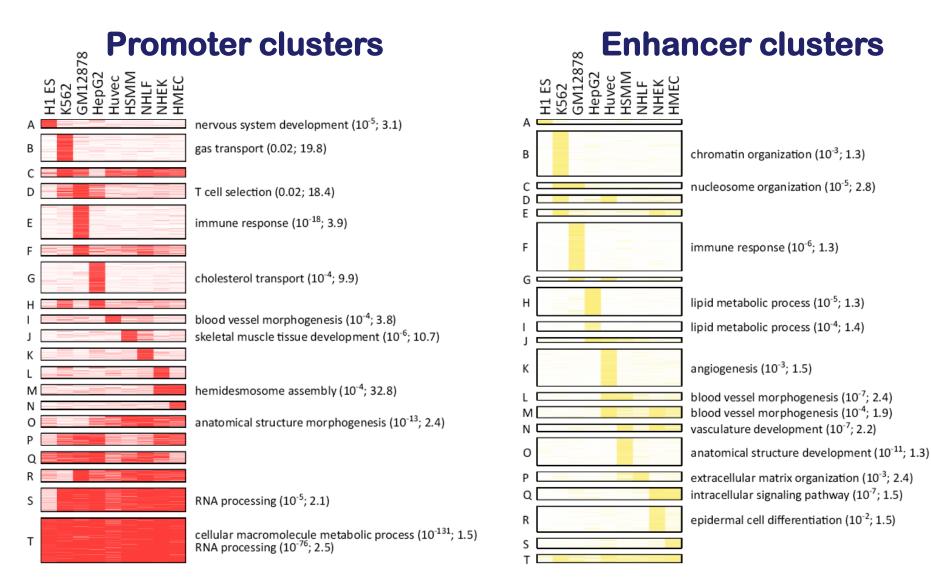
> Single genome-wide annotation for each cell type


Regulatory elements are cell type-specific

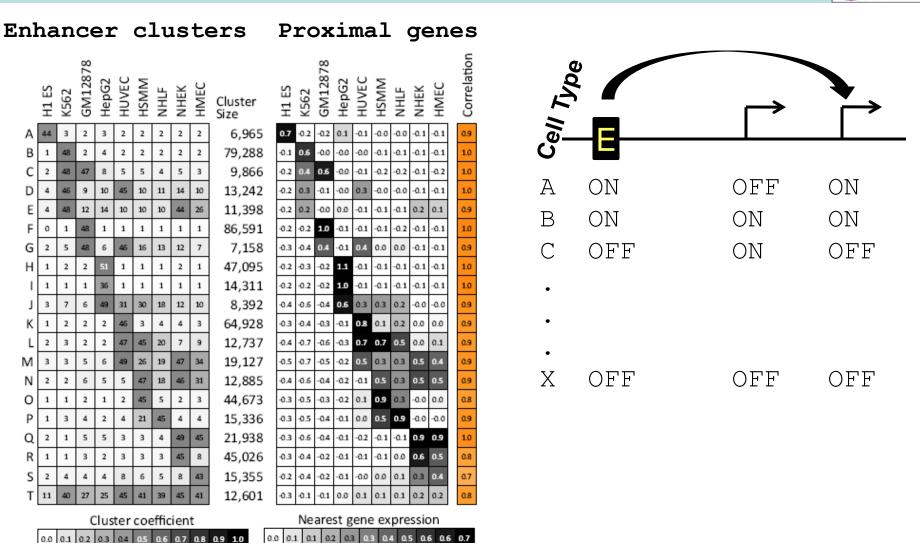
Cell type-specific enhancers validated

Genome regulatory network


Gene interactions inferred from co-variation

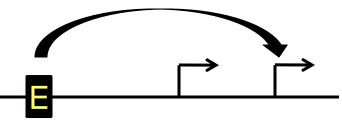

ENCODE

Ignored non-coding regulatory elements


Can we incorporate enhancers into a regulatory network by using variations in chromatin state?

Regulatory elements can be grouped based on their cell type-specific activity

Enhancers can be linked to target genes based on correlated activity profiles


ENCODE

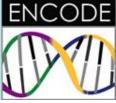
Cluster Coef/Gene Expr Correlation

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Enhancer-gene linkages supported by QTLs

Enl	na	ın	Ce	er		c.	lu	IS	te	ers	P	rc	x	i	ma	. (genes					
	H1 ES	K562	GM12878	HepG2	HUVEC	HSMM	NHLF	NHEK	HMEC	Cluster Size	H1 ES	K562	GM12878	HepG2	HUVEC	HSMM	NHLF	NHEK	HMEC	Correlation		
А															-0.1	-0.0	-0.0	-0.1	-0.1	0.9		
В	B 1 48 2 4 2 2 2 2 2 79,288													-0.0	-0.0	-0.1	-0.1	-0.1	-0.1	1.0		
С														-0.0	-0.1	-0.2	-0.2	-0.1	-0.2	1.0		
D	D 4 46 9 10 45 10 11 14 10 13,242														0.3	-0.0	-0.0	-0.1	-0.1	1.0		
E	E 4 48 12 14 10 10 10 44 26 11,398													0.0	-0.1	-0.1	-0.1	0.2	0.1	0.9		
F	F 0 1 48 1 1 1 1 1 1 86,591													-0.1	-0.1	-0.1	-0.2	-0.1	-0.1	1.0		
G	G 2 5 48 6 46 16 13 12 7 7,158													-0.1	0.4	0.0	0.0	-0.1	-0.1	0.9		
Н	1	2	2	51	1	1	1	2	1	47,095	-0.2	-0.3	-0.2	1.1	-0.1	-0.1	-0.1	-0.1	-0.1	1.0		
I	1	1	1	36	1	1	1	1	1	14,311	-0.2	-0.2	-0.2	1.0	-0.1	-0.1	-0.1	-0.1	-0.1	1.0		
J	3	7	6	49	31	30	18	12	10	8,392	-0.4	-0.6	-0.4	0.6	0.3	0.3	0.2	-0.0	-0.0	0.9		
K	1	2	2	2	46	3	4	4	3	64,928 12,737	-0.3	-0.4	-0.3	-0.1	0.8	0.1	0.2	0.0	0.0	0.9		
L	2	3	2	2	47	45	20	7	9	-0.4	-0.7	-0.6	-0.3	0.7	0.7	0.5	0.0	0.1	0.9			
м	3	3	5	6	49	26	19	47	34	19,127	-0.5	-0.7	-0.5	-0.2	0.5	0.3	0.3	0.5	0.4	0.9		
N	2	2	6	5	5	47	18	46	31	12,885	-0.4	-0.6	-0.4	-0.2	-0.1	0.5	0.3	0.5	0.5	0.9		
0	1	1	2	1	2	45	5	2	3	44,673	-0.3	-0.5	-0.3	-0.2	0.1	0.9	0.3	-0.0	0.0	0.8		
Р	1	3	4	2	4	21	45	4	4	15,336	-0.3	-0.5	-0.4	-0.1	0.0	0.5	0.9	-0.0	-0.0	0.9		
Q	2	1	5	5	3	3	4	49	45	21,938	-0.3	-0.6	-0.4	-0.1	-0.2	-0.1	-0.1	0.9	0.9	1.0		
R	1	1	3	2	3	3	3	45	8	45,026	-0.3	-0.4	-0.2	-0.1	-0.1	-0.1	0.0	0.6	0.5	0.8		
S	2	4	4	4	8	6	5	8	43	15,355	-0.2	-0.4	-0.2	-0.1	-0.0	0.0	0.1	0.3	0.4	0.7		
Т	11	40	27	25	45	41	39	45	41	12,601	-0.3	-0.1	-0.1	0.0	0.1	0.1	0.1	0.2	0.2	0.8		
			C	lus	ter	coe	effic	ien	t			Ne	are	st g	ene	e ex	pre	ssic	on			
	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9 1.0 0.	0 0.:	1 0.1	1 0.2	2 0.3	3 Q.	3 0.	4 0.	5 0.	6 0.6	5 0.7		
							Cl	ust	er C	oef/Gene E	Expr	Co	rre	atio	on							
							-1.0			5 -0.4 -0.2 0.0					1.0							

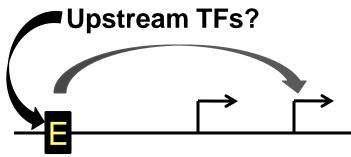
DE


EN(

Chromatin dynamics ~ Genetic variation

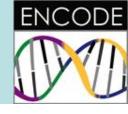
	5	Schadt	Liver	- Hep	G2		
Window Expansion	Fold (distance controlled)	p-val	#eQTL Pairs Linked	#Link Eligible	Expected (random)	Expected by Distance	Observed Fraction Linked
0	1.9	0.03	11	49	0.06	0.12	0.22
600	1.7	0.02	16	73	0.06	0.13	0.22
1000	1.7	0.01	21	98	0.06	0.13	0.2

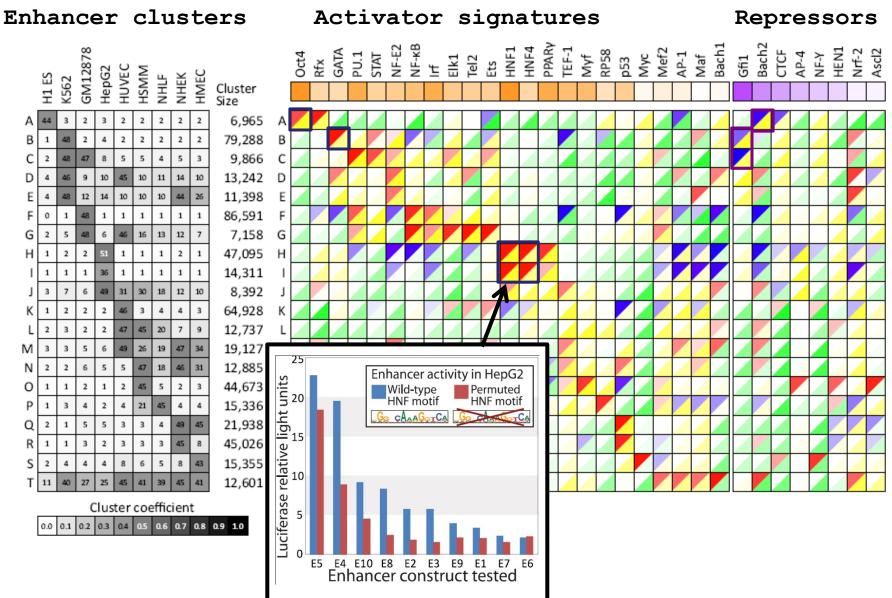
15m		Pickre	II LCL	- GM1	2878		2
Window Expansion	Fold (distance controlled)	p-val	#eQTL Pairs Linked	#Link Eligible	Expected (random)	Expected by Distance	Observed Fraction Linked
0	2.3	1.4E-02	9	32	0.07	0.12	0.28
600	2.3	4.0E-03	12	43	0.07	0.12	0.28
1000	1.9	2.0E-02	12	51	0.07	0.12	0.24


Predicting upstream regulators of enhancers

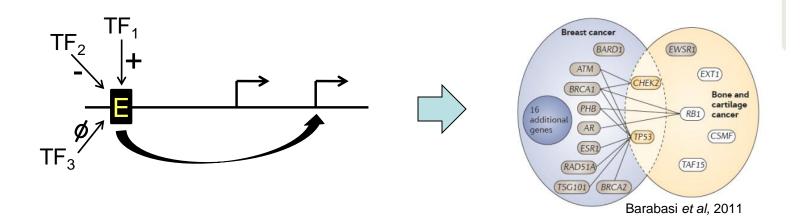
Enhancer clusters

	H1 ES	K562	GM12878	HepG2	HUVEC	HSMM	NHLF	NHEK	HMEC	Cluster Size
А	44	3	2	3	2	2	2	2	2	6,965
В	1	48	2	4	2	2	2	2	2	79,288
С	2	48	47	8	5	5	4	5	3	9,866
D	4	46	9	10	45	10	11	14	10	13,242
Е	4	48	12	14	10	10	10	44	26	11,398
F	0	1	48	1	1	1	1	1	1	86,591
G	2	5	48	6	46	16	13	12	7	7,158
Н	1	2	2	51	1	1	1	2	1	47,095
Т	1	1	1	36	1	1	1	1	1	14,311
J	3	7	6	49	31	30	18	12	10	8,392
Κ	1	2	2	2	46	з	4	4	ы	64,928
L	2	3	2	2	47	45	20	7	9	12,737
М	3	3	5	6	49	26	19	47	34	19,127
Ν	2	2	6	5	5	47	18	46	31	12,885
0	1	1	2	1	2	45	5	2	3	44,673
Ρ	1	3	4	2	4	21	45	4	4	15,336
Q	2	1	5	5	3	3	4	49	45	21,938
R	1	1	3	2	3	3	3	45	8	45,026
S	2	4	4	4	8	6	5	8	43	15,355
т	11	40	27	25	45	41	39	45	41	12,601
			~	-luc	+ - r		fic	ion	+	-

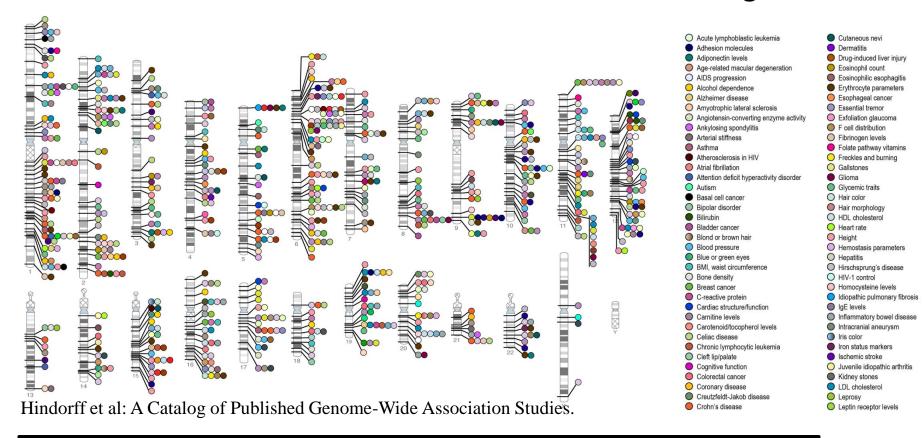

		C	lus	ter	coe	effic	ien	t		
0.0	0.1	0.2	0.3	0.4	05	0.6	0.7	0.8	0.9	1.0



Approach:


- 1. Identify enriched motifs
- 2. Evaluate expression of cognate TFs
- 3. Identify signatures for 'activators' and 'repressors' of enhancer clusters

Predicting upstream regulators of enhancers


Incorporating distal enhancers into a genome regulatory network

- >100,000 predicted enhancers
- ~10% linked to candidate target genes
- ~25 cell type-specific TFs as upstream regulators

Disease SNPs enriched in enhancer states

GWAS: Most disease-associated variants are non-coding

encode

Disease SNPs enriched >2-fold in enhancer chromatin states

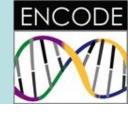
(control SNPs do not show any preference)

Disease SNPs correlate with enhancers that are active in <u>related cell types</u>

Phenotype	Top Cell Type	Total #SNPs from Study	#SNPs in enh. States 4 and 5	p-value	FDR	H1 ES		GM12878	HepG2	HUVEC	HSMM	NHLF	NHEK	HMEC
Erythrocyte phenotypes (Ref. 38)	K562	35	9	<10 ⁻⁷	0.02	9	17	4	0	0	1	2	1	1
Blood lipids (Ref. 39)	HepG2	101	13	<10 ⁻⁷	0.02	3	5	0	11	2	3	3	4	3
Rheumatoid arthritis (Ref. 40)	GM12878	29	7	2.0 x 10 ⁻⁷	0.03	0	0	15	0	2	0	0	2	3
Primary billary cirrhosis (Ref. 41)	GM12878	6	4	6.0 x 10 ⁻⁷	0.03	0	11	41	0	0	0	0	8	8
Systemic lupus erythromatosus (Ref. 42)	GM12878	18	6	9.0 x 10 ⁻⁷	0.03	0	4	21	0	5	8	0	3	5
Lipoprotein cholesterol/triglycerides (Ref. 43)	HepG2	18	5	1.2 x 10 ⁻⁶	0.03	17	8	0	24	3	6	4	3	3
Hematological traits (Ref. 44)	K562	39	7	1.7 x 10 ⁻⁶	0.03	0	12	10	2	1	0	0	1	0
Hematological parameters (Ref. 45)	K562	28	6	2.2 x 10 ⁻⁶	0.03	0	15	7	0	5	7	7	3	2
Colorectal cancer (Ref. 46)	HepG2	4	3	3.8 x 10 ⁻⁶	0.03	0	0	0	66	0	12	0	12	12
Blood pressure (Ref. 47)	K562	9	4	5.0 x 10 ⁻⁶	0.04	0	30	14	0	10	6	7	5	11

Disease/phenotype

Enhancer specificity


ENC

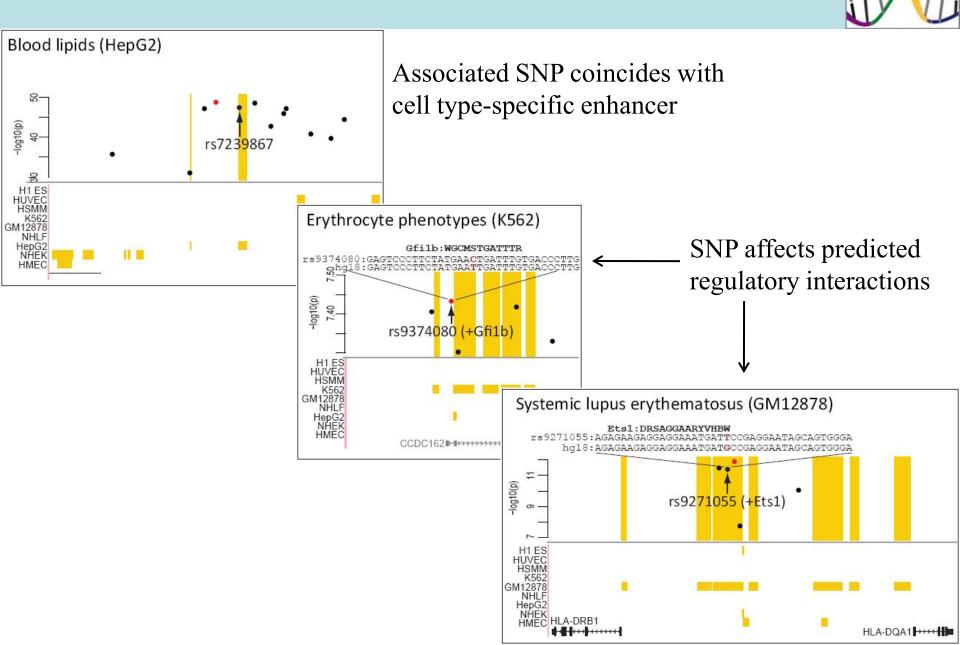
Erythrocyte phenotypes \longleftrightarrow Erythrocytic cells

Lipids, cholesterol <----->Hepatic cells

Lupus, arthritis <----->Lymphoid cells

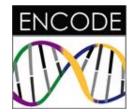
GWAS datasets intersected with chromatin states

Distance (kb)


Distance (kb)

Blood lip	ide	-													SNP	H1 ES	K562	GM12878	HepG2	Huvec	HSMM	NHLF	NHEK	HMEC	Chrom. Band	Gene	Link Score
blood lip	iu.		~									0	Distance (kb)		rs11915082										3q29		
			GM12878	2		~				÷		Link Score	ce		rs1122794											HBQ1	2.2
	H1 ES	K562	/12	HepG2	Huvec	HSMM	NHLF	NHEK	HMEC	Chrom. Band	Gene	k Sc	tan		rs11085824									_		GCDH	-
SNP	H1	K5	G	Нe	귀	HS	ЧN	Ξ	Ę	Ba	Ge	Lin	Dis		rs643381										6q24		
rs2479409										1p32]	rs9349205											BYSL	2.2
rs10761731										10q21					rs12718597											IKZF1	1.9
rs1169288										12q24					rs11065987										•	BRAP	1.8
rs2072183										7p13					rs4895441										6q23	HBS1L	1.7
rs2923084										11p15					rs628751										6q24		
rs629301										1p13	CELSR2	2.1	26		rs10758658											RCL1	1.6
rs4846914										1q42					rs172629				_						4q12		
rs514230										1q42					rs7776054										6q23	HBS1L	1.6
rs1367117										2p24	АРОВ	-	3		rs131794										22q13	ODF3B	-
rs581080										9p22	ТТСЗ9В	-	2		rs9374080										6q21		
rs3136441										11p11	F2	-	2		rs7786877											MOSPD3	-
rs16942887										16q22	PSKH1	-	1		rs7385804										7q22	TFR2	-
rs6511720										19p13	LDLR	-	2														
rs737337										19p13	LOC55908	-	1		Systemic	Ъu	in	115	е	rv	th	e	m	at	osus		
rs439401										19q13	APOC1	-	4		Systemic	10	'P'	-	C	• 9				-	.0545		
rs605066										6q24								878	~		_				÷		Link Score
rs2000999										16q22	HPR	5.5	11			H1 ES	52	GM1287	HepG2	Huvec	HSMM	NHLF	NHEK	Ē	Chrom. Band	Gene	k Sc
rs1800961										20q13	HNF4A	2.3	12		SNP	Ħ	K562	ß	Ч	Ŧ	E E	E i	HZ E	≥ E	Bai	Ge	Lin
rs9686661										5q11					rs13385731										2p22		
rs2293889										8q23					rs10036748										5q33		
rs1883025										9q31	ABCA1	1.9	26		rs1385374										12q24	MGC16384	-
rs2068888										10q23	CYP26A1	1.6	6		rs2230926										6q23	TNFAIP3	3.7
rs4765127										12q24	ZNF664	-	2		rs4728142										7q32	IRF5	-
rs838880										12q24					rs9271100										6p21	HLA-DRB1	4.5
rs6065906										20q13	CTSA	1.6	35		rs4917014										7p12	IKZF1	2.2
rs1689800	1									1q25					rs7812879									-11	-	BLK	2.9
rs2412710										15q15					rs2205960	1									1q25		
rs11649653										16p11					rs548234										6q21		

Erythrocyte phenotypes


Annotations & regulatory predictions for GWAS

ENCODE

Genome annotations & regulatory predictions for biomedical research

- Epigenomic maps reveal non-coding elements & cell type-specificities
- Chromatin dynamics link enhancers, regulators & target genes
- Annotations & regulatory predictions for GWAS
- Integration of ENCODE (TFs, RNAs) & Epigenomics (*in vivo* tissues) data will provide a rich resource for interpreting human disease

