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A second generation human haplotype
map of over 3.1 million SNPs
The International HapMap Consortium*

We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs)
genotyped in 270 individuals from four geographically diverse populations and includes 25–35% of common SNP variation in
the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r2 of
between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide
genotyping products captures common Phase II SNPs with an average maximum r2 of up to 0.8 in African and up to 0.95 in
non-African populations, and that potential gains in power in association studies can be obtained through imputation. These
data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10–30% of pairs of individuals within
a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all
common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination
rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased
differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or
efficacy of natural selection between populations.

Advances made possible by the Phase I haplotype map

The International HapMap Project was launched in 2002 with the
aim of providing a public resource to accelerate medical genetic
research. The objective was to genotype at least one common SNP
every 5 kilobases (kb) across the euchromatic portion of the genome
in 270 individuals from four geographically diverse populations1,2: 30
mother–father–adult child trios from the Yoruba in Ibadan, Nigeria
(abbreviated YRI); 30 trios of northern and western European ances-
try living in Utah from the Centre d’Etude du Polymorphisme
Humain (CEPH) collection (CEU); 45 unrelated Han Chinese indi-
viduals in Beijing, China (CHB); and 45 unrelated Japanese indivi-
duals in Tokyo, Japan (JPT). The YRI samples and the CEU samples
each form an analysis panel; the CHB and JPT samples together form
an analysis panel. Approximately 1.3 million SNPs were genotyped in
Phase I of the project, and a description of this resource was pub-
lished in 2005 (ref. 3).

The initial HapMap Project data had a central role in the develop-
ment of methods for the design and analysis of genome-wide asso-
ciation studies. These advances, alongside the release of commercial
platforms for performing economically viable genome-wide geno-
typing, have led to a new phase in human medical genetics. Already,
large-scale studies have identified novel loci involved in multiple
complex diseases4,5. In addition, the HapMap data have led to novel
insights into the distribution and causes of recombination hot-
spots3,6, the prevalence of structural variation7,8 and the identity of
genes that have experienced recent adaptive evolution3,9. Because the
HapMap cell lines are publicly available, many groups have been able
to integrate their own experimental data with the genome-wide SNP
data to gain new insight into copy-number variation10, the relation-
ship between classical human leukocyte antigen (HLA) types and
SNP variation11, and heritable influences on gene expression12–14.
The ability to combine genome-wide data on such diverse aspects
of genetic variation with molecular phenotypes collected in the same
samples provides a powerful framework to study the connection of
DNA sequence to function.

In Phase II of the HapMap Project, a further 2.1 million SNPs
were successfully genotyped on the same individuals. The resulting
HapMap has an SNP density of approximately one per kilobase
and is estimated to contain approximately 25–35% of all the 9–10
million common SNPs (minor allele frequency (MAF) $ 0.05) in the
assembled human genome (that is, excluding gaps in the reference
sequence alignment; see Supplementary Text 1), although this num-
ber shows extensive local variation. This paper describes the Phase II
resource, its implications for genome-wide association studies and
additional insights into the fine-scale structure of linkage disequilib-
rium, recombination and natural selection.

Construction of the Phase II HapMap

Most of the additional genotype data for the Phase II HapMap were
obtained using the Perlegen amplicon-based platform15. Briefly, this
platform uses custom oligonucleotide arrays to type SNPs in DNA
segmentally amplified via long-range polymerase chain reaction
(PCR). Genotyping was attempted at 4,373,926 distinct SNPs, which
corresponds, with exceptions (see Methods), to nearly all SNPs in
dbSNP release 122 for which an assay could be designed. Additional
submissions were included from the Affymetrix GeneChip Mapping
Array 500K set, the Illumina HumanHap100 and HumanHap300
SNP assays, a set of ,11,000 non-synonymous SNPs genotyped by
Affymetrix (ParAllele) and a set of ,4,500 SNPs within the extended
major histocompatibility complex (MHC)11. Genotype submissions
were subjected to the same quality control (QC) filters as described
previously (see Methods) and mapped to NCBI build 35 (University
of California at Santa Cruz (UCSC) hg17) of the human genome. The
re-mapping of SNPs from Phase I of the project identified 21,177
SNPs that had an ambiguous position or some other feature indi-
cative of low reliability; these are not included in the filtered Phase II
data release. All genotype data are available from the HapMap Data
Coordination Center (http://www.hapmap.org) and dbSNP (http://
www.ncbi.nlm.nih.gov/SNP); analyses described in this paper refer
to release 21a. Three data sets are available: ‘redundant unfiltered’
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contains all genotype submissions, ‘redundant filtered’ contains all
submissions that pass QC, and ‘non-redundant filtered’ contains a
single QC1 submission for each SNP in each analysis panel.

The QC filters remove SNPs showing gross errors. However, it is
also important to understand the magnitude and structure of more
subtle genotyping errors among SNPs that pass QC. We therefore
carried out a series of analyses to assess the influence of the long-range
PCR amplicon structure on genotyping error, the concordance rates
between genotype calls from different genotyping platforms and
between those platforms and re-sequencing assays, as well as the rates
of false monomorphism and mis-mapping of SNPs (see Supplemen-
tary Text 2, Supplementary Figs 1–3 and Supplementary Tables 1–4).
We estimate that the average per genotype accuracy is at least 99.5%.
However, there are higher rates of missing data and genotype discre-
pancies at non-reference alleles, with some clustering of errors result-
ing from the amplicon design and a few incorrectly mapped SNPs.

Table 1 shows the numbers of SNPs attempted and converted to
QC1 SNPs in each analysis panel (Supplementary Table 5 shows a
breakdown by each major submission). Haplotypes and missing data
were estimated for each analysis panel separately using both trio
information and statistical methods based on the coalescent model
(see Methods). To enable cross-population comparisons, a con-
sensus data set was created consisting of 3,107,620 SNPs that were
QC1 in all analysis panels and polymorphic in at least one analysis
panel. The equivalent figure from Phase I was 931,340 SNPs. Unless
stated otherwise, all analyses have been carried out on the consensus
data set. An additional set of haplotypes was created for those SNPs in
the consensus where a putative ancestral state could be assigned by

comparison of the human alleles to the orthologous position in the
chimpanzee and rhesus macaque genomes.

The variation in SNP density within the Phase II HapMap is shown
in Fig. 1. On average there are 1.14 genotyped polymorphic SNPs per
kilobase (average spacing is 875 base pairs (bp)) and 98.6% of the
assembled genome is within 5 kb of the nearest polymorphic SNP.
Still, there is heterogeneity in genotyped SNP density at both broad
(Fig. 1a) and fine (Fig. 1b) scales. Furthermore, there are systematic
changes in genotyped SNP density around genomic features includ-
ing genes (Fig. 1c).

The Phase II HapMap differs from the Phase I HapMap not only
in SNP spacing, but also in minor allele frequency distribution and
patterns of linkage disequilibrium (Supplementary Fig. 4). Because
the criteria for choosing additional SNPs did not include considera-
tion of SNP spacing or preferential selection for high MAF, the SNPs
added in Phase II are, on average, more clustered and have lower
MAF than the Phase I SNPs. Because MAF predictably influences the
distribution of linkage disequilibrium statistics, the average r2 at a
given physical distance is typically lower in Phase II than in Phase I;
conversely, the jD9j statistic is typically higher (data not shown). One
notable consequence is that the Phase II HapMap includes a better
representation of rare variation than the Phase I HapMap.

The increased resolution provided by Phase II of the project is
illustrated in Fig. 2. Broadly, an additional SNP added to a region
shows one of three patterns. First, it may be very similar in distribution
to SNPs present in Phase I. Second, it may provide detailed resolution
of haplotype structure (for example, a group of chromosomes with
identical local haplotypes in Phase I can be shown in Phase II to carry

Table 1 | Summary of Phase II HapMap data (release 21)

Phase SNP categories Analysis panel

YRI CEU CHB1JPT

I Assays submitted 1,304,199 1,344,616 1,306,125

Passed QC 1,177,312 (90%) 1,217,902 (91%) 1,187,800 (91%)
Did not pass QC 126,887 (10%) 126,714 (9%) 118,325 (9%)

.20% missing 82,463 (65%) 95,684 (76%) 78,323 (66%)

.1 duplicate inconsistent 6,049 (5%) 5,126 (4%) 9,242 (8%)

.1 mendelian error 18,916 (15%) 11,310 (9%) N/A
,0.001 Hardy–Weinberg P -value 10,265 (8%) 8,922 (7%) 13,722 (12%)
Other failures 19,345 (15%) 13,858 (11%) 20,674 (17%)

II Assays submitted 5,044,989 5,044,996 5,043,775

Passed QC 3,150,433 (62%) 3,204,709 (64%) 3,244,897 (64%)
Did not pass QC 1,894,556 (38%) 1,840,287 (36%) 1,798,878 (36%)

.20% missing 1,419,000 (75%) 1,398,166 (76%) 1,403,543 (78%)

.1 duplicate inconsistent 0 (0%) 0 (0%) 6,617 (0%)

.1 mendelian error 172,339 (9%) 127,923 (7%) N/A
,0.001 Hardy–Weinberg P -value 96,231 (5%) 82,268 (4%) 108,880 (6%)
Other failures 334,511 (18%) 337,906 (18%) 340,370 (19%)

Overall Assays submitted 6,349,188 6,389,612 6,349,900

Passed QC 4,327,745 (68%) 4,422,611 (69%) 4,432,697 (70%)
Did not pass QC 2,021,443 (32%) 1,967,001 (31%) 1,917,203 (30%)

.20% missing 1,501,463 (74%) 1,493,850 (76%) 1,481,866 (77%)

.1 duplicate inconsistent 6,049 (0%) 5,126 (0%) 15,859 (1%)

.1 mendelian error 191,255 (9%) 139,233 (7%) N/A
,0.001 Hardy–Weinberg P -value 106,496 (5%) 91,190 (5%) 122,602 (6%)
Other failures 353,856 (18%) 351,764 (18%) 361,044 (19%)

Non-redundant (unique) SNPs 3,796,934 3,868,157 3,890,416

Monomorphic 861,299 (23%) 1,246,183 (32%) 1,410,152 (36%)
Polymorphic 2,935,635 (77%) 2,621,974 (68%) 2,480,264 (64%)

SNP categories All analysis panels

Unique QC-passed SNPs 4,000,107

Passed in one analysis panel 88,140 (2%)
Passed in two analysis panels 268,534 (7%)
Passed in three analysis panels (QC13) 3,643,433 (91%)
QC13 and monomorphic across
three analysis panels

535,813

QC13 and polymorphic in at least one analysis panel 3,107,620

QC13 and polymorphic in all three analysis panels 2,006,352

QC13 and MAF $ 0.05 in at least
one of three analysis panels

2,819,322
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multiple related haplotypes). Third, the novel SNP (or group of added
SNPs) may reveal previously missed recombinant haplotypes. The
extent to which each type of event occurs varies among populations
and chromosomal regions. The greatest gains in resolution, in terms of
identifying new recombinant haplotypes and haplotype groupings,
occur in YRI. Consequently, the Phase II HapMap provides increased
resolution in the estimated fine-scale genetic map and improved
power to detect and localize recombination hotspots (Fig. 2b).

The use of the Phase II HapMap in association studies

The increased SNP density of the Phase II HapMap has already been
extensively exploited in genome-wide studies of disease association.

In this section, we quantify the gain in resolution and outline how
the HapMap data can be used to improve the power of association
studies.
Improved coverage of common variation. We previously predicted
that the vast majority of common SNPs would be correlated to Phase
II HapMap SNPs by extrapolation from the ten HapMap ENCODE
regions3. Using the actual Phase II marker spacing and frequency
distributions (Table 2), we repeated the simulations and estimate
that Phase II HapMap marker sets capture the overwhelming ma-
jority of all common variants at high r2. For common variants
(MAF $ 0.05) the mean maximum r2 of any SNP to a typed one is
0.90 in YRI, 0.96 in CEU and 0.95 in CHB1JPT. The impact of the
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Figure 1 | SNP density in the Phase II HapMap. a, SNP density across the
genome. Colours indicate the number of polymorphic SNPs per kb in the
consensus data set. Gaps in the assembly are shown as white. b, Example of
the fine-scale structure of SNP density for a 100-kb region on chromosome
17 showing Perlegen amplicons (black bars), polymorphic Phase I SNPs in
the consensus data set (red triangles) and polymorphic Phase II SNPs in the
consensus data set (blue triangles). Note the relatively even spacing of Phase

I SNPs. c, The distribution of polymorphic SNPs in the consensus Phase II
HapMap data (blue line and left-hand axis) around coding regions. Also
shown is the density of SNPs in dbSNP release 125 around genes (red line
and right-hand axis). Values were calculated separately 59 from the coding
start site (the left dotted line) and 39 from the coding end site (right dotted
line) and were joined at the median midpoint position of the coding unit
(central dotted line).
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Figure 2 | Haplotype structure and recombination rate estimates from the
Phase II HapMap. a, Haplotypes from YRI in a 100 kb region around the
b-globin (HBB) gene. SNPs typed in Phase I are shown in dark blue.
Additional SNPs in the Phase II HapMap are shown in light blue. Only SNPs
for which the derived allele can be unambiguously identified by parsimony
(by comparison with an outgroup sequence) are shown (89% of SNPs in the

region); the derived allele is shown in colour. b, Recombination rates (lines)
and the location of hotspots (horizontal blue bars) estimated for the same
region from the Phase I (dark blue) and Phase II HapMap (light blue) data.
Also shown are the location of genes within the region (grey bars) and the
location of the experimentally verified recombination hotspot57,58 at the 59

end of the HBB gene (black bar).
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increased density of the Phase II HapMap is most notable in YRI (in
the Phase I HapMap the mean maximum r2 was 0.67). Similar results
are found if a threshold of r2 $ 0.8 is used to determine whether an
SNP is captured (Table 2). As expected, very common SNPs with
MAF . 0.25 are captured extremely well (mean maximum r2 of 0.93
in YRI to 0.97 in CEU), whereas rarer SNPs with MAF , 0.05 are less
well covered (mean maximum r2 of 0.74 in CHB1JPT to 0.76 in
YRI). The latter figure is probably an overestimate because it is based
on lower frequency SNPs discovered via re-sequencing 48 HapMap
individuals, and does not include a much larger number of very rare
SNPs. We also assessed the increase in coverage provided by using
two-SNP haplotypes as proxies for SNPs that are poorly captured by
single SNPs16 (Table 2). These two-SNP haplotypes lead to a modest
increase in mean maximum r2 of 0.01 to 0.03 across all allele frequen-
cies. However, in some regions, particularly where marker density is
low, gains from multi-marker and imputation approaches in prac-
tical situations can be substantial (see below).

Currently, the Phase II HapMap provides the most complete avail-
able resource for selecting tag SNPs genome-wide. Using a simple
pairwise tagging approach, we find that 1.09 million SNPs are
required to capture all common Phase II SNPs with r2 $ 0.8 in
YRI, with slightly more than 500,000 required in CEU and
CHB1JPT (Table 3). These numbers are approximately twice those
required to capture SNPs in the Phase I HapMap (which has one-
third as many SNPs). The number of SNPs required to achieve per-
fect tagging (r2 5 1.0) in each analysis panel is almost double that
required to achieve the r2 $ 0.8 threshold. It becomes increasingly

expensive to improve the coverage afforded by tags from the Phase I
and, now, the Phase II HapMap, because additional tag SNPs are
unlikely to capture large groups of additional SNPs.
Phase II HapMap and genome-wide association studies. Although
the efficient choice of tag SNPs is one use of the Phase II HapMap, for
most disease studies the tag SNPs genotyped will be primarily deter-
mined by the choice of a commercial platform for the experiment17,18.
Using Phase II data, we estimated the coverage of several available
products on which genome-wide association studies are already
underway (Table 4). Similar to earlier estimates17,18, these products
typically perform well in CEU and CHB1JPT, and some also per-
form well in YRI. For example, arrays of approximately 500,000 SNPs
capture 68–88% (depending on selection method) of all HapMap
Phase II variation with r2 $ 0.8 in CEU. SNPs that are not included in
the Phase II HapMap will be covered more poorly because most
genotyping products were designed using HapMap data.

HapMap data have several additional roles in the analysis of dis-
ease-association studies using fixed marker sets. For example, the
high-quality haplotype information within the Phase II HapMap
can be used to aid the phasing of genotype data from new samples
because additional haplotypes are likely to be locally very similar to at
least one haplotype in the Phase II data. By a similar argument,
missing genotypes can potentially be inferred through comparison
to the Phase II haplotypes. Genotypes may be missing either because
of genotyping failure or because the SNP was not assayed within
the experiment. Therefore, the HapMap haplotypes provide a way
of in silico genotyping Phase II SNPs that were not included in the
experiment.

Although there is no clear consensus yet about the role of SNP
imputation in the analysis of genome-wide association studies, high
imputation accuracy can be achieved using model-based meth-
ods19–23 and can lead to an increase in power23,24. To illustrate the
possibilities, in the 500-kb HapMap ENCODE region on 8q24.11
(Supplementary Fig. 5) we evaluated imputation of Phase II SNPs
from the Affymetrix GeneChip 500K array. To do this, we used a

Table 2 | Estimated coverage of the Phase II HapMap in the ten HapMap ENCODE regions

Panel MAF bin Phase I HapMap3 Phase II HapMap

Pairwise linkage disequilibrium Additional 2-SNP tests

r2 $ 0.8 (%) Mean maximum r2 r2 $ 0.8 (%) Mean maximum r2 r2 $ 0.8 (%) Mean maximum r2

YRI $0.05 45 0.67 82 0.90 87 0.93

,0.05 61 0.76 62 0.78

0.05–0.10 81 0.89 81 0.89

0.10–0.25 90 0.94 90 0.95

0.25–0.50 87 0.93 92 0.96

CEU $0.05 74 0.85 93 0.96 95 0.97

,0.05 70 0.79 72 0.81

0.05–0.10 87 0.92 88 0.93

0.10–0.25 94 0.96 95 0.97

0.25–0.50 95 0.97 97 0.98

CHB1JPT $0.05 72 0.83 92 0.95 95 0.97

,0.05 65 0.74 65 0.74

0.05–0.10 81 0.89 82 0.89

0.10–0.25 90 0.94 90 0.95

0.25–0.50 94 0.96 97 0.98

2-SNP tests, linkage disequilibrium to haplotypes formed from two nearby SNPs.

Table 4 | Estimated coverage of commercially available fixed marker arrays

Platform* YRI CEU CHB1JPT

r2 $ 0.8 (%) Mean maximum r2 r2 $ 0.8 (%) Mean maximum r2 r2 $ 0.8 (%) Mean maximum r2

Affymetrix GeneChip 500K 46 0.66 68 0.81 67 0.80

Affymetrix SNP Array 6.0 66 0.80 82 0.90 81 0.89

Illumina HumanHap300 33 0.56 77 0.86 63 0.78

Illumina HumanHap550 55 0.73 88 0.92 83 0.89

Illumina HumanHap650Y 66 0.80 89 0.93 84 0.90

Perlegen 600K 47 0.68 92 0.94 84 0.90

* Assuming all SNPs on the product are informative and pass QC; in practice these numbers are overestimates.

Table 3 | Number of tag SNPs required to capture common (MAF $ 0.05)
Phase II SNPs

Threshold YRI CEU CHB1JPT

r2 $ 0.5 627,458 290,969 277,831

r2 $ 0.8 1,093,422 552,853 520,111

r2 5 1.0 1,616,739 1,024,665 1,078,959
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leave-one-out procedure to assess the accuracy of genotype predic-
tion in the YRI. For SNPs with MAF $ 0.2, the average maximum r2

to a typed SNP in the region is 0.59 compared to an average genotype
prediction r2 of 0.86. Furthermore, whereas 44% of such SNPs in the
region have no single-marker proxy with r2 $ 0.5, fewer than 6% of
the SNPs have a genotype imputation accuracy of r2 , 0.5, establish-
ing that accurate imputation can be achieved even in the population
where linkage disequilibrium is the weakest.

New insights into linkage disequilibrium structure

The paradigm underlying association studies is that linkage disequi-
librium can be used to capture associations between markers and
nearby untyped SNPs. However, the Phase II HapMap has revealed
several properties of linkage disequilibrium that illustrate the full
complexity of empirical patterns of genetic variation. Two striking
features are the long-range similarity among haplotypes, and SNPs
that show almost no linkage disequilibrium with any other SNP.
The extent of recent common ancestry and segmental sharing. A
simplified view of linkage disequilibrium is that genetic variation is
organized in relatively short stretches of strong linkage disequilib-
rium (haplotype blocks), each containing only a few common hap-
lotypes and separated by recombination hotspots across which little
association remains25. Although this view has heuristic value, if chro-
mosomes share a recent common ancestor then similarity between
chromosomes can extend over considerable genetic distance and span
multiple recombination hotspots26. The extent of such recent ancestry
in the four populations surveyed here has not been characterized

previously. Therefore we identified stretches of identity between pairs
of chromosomes, both within and across individuals, reflecting auto-
zygosity and identity-by-descent (IBD) (Fig. 3a). After first checking
for stratification within each analysis panel (see Supplementary Text 3;
none was found for YRI, CEU and JPT, and only small stratification
was found for CHB), we calculated genome-wide probabilities of
sharing 0, 1 or 2 chromosomes identical by descent for each pair of
individuals (see Supplementary Text 4). In addition to identifying a
few close relationships (as reported in HapMap Phase I3), we estimate
that, on average, any two individuals from the same population share
approximately 0.5% of their genome through recent IBD (Table 5).
Using a hidden Markov model approach27 (see Supplementary Text
5), we searched for such shared segments over 1-megabase (Mb) long
and containing at least 50 SNPs, after first pruning the list of SNPs to
remove local linkage disequilibrium. We find that 10–30% of pairs
in each analysis panel share regions of extended identity resulting
from sharing a common ancestor within 10–100 generations. These
regions typically span hundreds of SNPs and can extend over tens of
megabases (Table 5).

Similarly, extended stretches of homozygosity are indicative of
recent inbreeding within populations28,29. Although short runs of
homozygosity are commonplace, covering up to one-third of the
genome and showing population differences reflective of ancient
linkage disequilibrium patterns (Table 5 and Fig. 3b), very long
homozygous runs exist that are clearly distinct from this process.
Including two JPT individuals who have unusually high levels of
homozygosity (NA18987 and NA18992) and one CEU individual
(NA12874), we identified 79 homozygous regions over 3 Mb in 51
individuals, with many segments extending over 10 Mb (Supplemen-
tary Tables 7 and 8). Segments intersecting with suspected deletions
were first removed from the analysis (Supplementary Text 6).

In studies of rare mendelian diseases, the extended haplotype shar-
ing surrounding recent mutations, usually with a frequency of much
less than 1%, has been exploited to great advantage through homo-
zygosity mapping30,31 and haplotype sharing32 methods. In studies of
common disease, extended haplotype sharing among patients poten-
tially offers a route for identifying rare variants (MAF in the range of
1–5%) of high penetrance33,34, which tend to be poorly captured
through single-marker association with genome-wide arrays. To
illustrate the idea, we identified SNPs where only two copies of the
minor allele are present (referred to as ‘2-SNPs’), which have minor
allele frequencies of 1–2%. We find that these are enriched approxi-
mately sevenfold (Table 5) among regions of IBD identified by the
hidden Markov model approach. Notably, identification of IBD re-
gions can be performed with the same genome-wide SNP data being
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Figure 3 | The extent of recent co-ancestry among HapMap individuals.
a, Three pairs of individuals with varying levels of identity-by-descent (IBD)
sharing illustrate the continuum between very close and very distant
relatedness and its relation to segmental sharing. The three pairs are: high
sharing (NA19130 and NA19192 from YRI; previously identified as second-
degree relatives3), moderate sharing (NA06994 and NA12892 from CEU)
and low sharing (NA12006 and NA12155 from CEU). Along each
chromosome, the probability of sharing at least one chromosome IBD is
plotted, based on the HMM method described in Supplementary Text 5. Red
sections indicate regions called as segments: in general, the proportion of the
genome in segments is similar to each pair’s estimated global relatedness.
b, The extent of homozygosity on each chromosome for each individual in
each analysis panel. Excludes segments ,106 kb and chromosome X in
males. Asterisk, NA12874, length 5 107 Mb. YRI, green; CEU, orange; CHB,
blue; JPT, magenta.

Table 5 | Relatedness, extended segmental sharing and homozygosity

Property YRI CEU CHB JPT

Number of pairs included 1,767 1,708 990 861

Mean identity by state (IBS) (%) 81.9 83.7 85.0 85.1
Mean identity by descent (IBD) (%) 0.04 0.34 0.36 0.42

Number of pairs with .1% IBD (%) 8.8 20.4 21.1 29.7
Number of pairs with one or more
segment (%)

195

(11.0)
350

(20.5)
135

(13.6)
216

(25.1)
Total number of segments 250 427 146 273

Total distance spanned (Mb) 1,416 2,336 704 1,301

Mean segment length (Mb) 5.7 5.5 4.8 4.8
Maximum segment length (Mb) 51.7 56.2 15.0 25.3
Maximum segment length (Mb)
(including close relatives)

141.4 128.5 N/A N/A

Total number of 2-SNPs 6,219 9,220 8,174 8,750

Number of 2-SNPs in segments 109 162 116 132

2-SNP fold increase 6.7 7.3 7.6 7.0
Number of homozygous segments
(310

3)*
0.9 2.2 2.6 2.6

SNPs in homozygous segments (310
5) 1.6 4.2 5.3 5.4

Total length of homozygous segments
(Mb)

160 410 510 520

2-SNP, SNPs where only two copies of the minor allele are present.
* Homozygous segments .106 kb.
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collected in large-scale association studies, making haplotype-
sharing approaches an attractive and complementary analysis to
standard SNP association tests, with the potential to identify rare
variants associated with complex disease.
The distribution and causes of untaggable SNPs. Despite the SNP
density of the Phase II HapMap, there are high-frequency SNPs
for which no tag can be identified. Among high-frequency SNPs
(MAF $ 0.2), we marked as untaggable SNPs to which no other
SNP within 100 kb has an r2 value of at least 0.2. In Phase II, approxi-
mately 0.5–1.0% of all high-frequency SNPs are untaggable and the
proportion in YRI is approximately twice as high as in the other
panels. Similar proportions are observed across the ten HapMap
ENCODE regions.

To identify factors influencing the location of untaggable SNPs
we considered their distribution relative to segmental duplications,
repeat sequence, CpG dinucleotide density, regions of low SNP den-
sity, unusual allele frequency distribution, linkage disequilibrium
patterns and recombination hotspots. We find no evidence for an
enrichment of untaggable SNPs in segmental duplications or repeat
sequence, as would be expected from mis-mapping of SNPs (2% and
35% of common SNPs lie in segmental duplications and repeat
sequence, respectively, compared to 1.8% and 29%, respectively, of
untaggable SNPs). Untaggable SNPs are slightly enriched in CpG
islands (0.37% of common SNPs are in CpG islands compared to
1.4% of untaggable SNPs) and have slightly reduced MAF (Fig. 4).
Most notably, untaggable SNPs are strongly enriched in regions of
low linkage disequilibrium, particularly in recombination hotspots.
To test whether these untaggable SNPs are themselves responsible for
the identification of recombination hotspots, we eliminated them
from 100 randomly chosen recombination hotspots and reassessed
the evidence for a local peak in recombination. In all cases we still find
evidence for a considerable increase in local recombination rate.

Over 50% of all untaggable SNPs lie within 1 kb of the centre of a
detected recombination hotspot and over 90% are within 5 kb.
Because only 3–4% of all SNPs lie within 1 kb from the centre of a
detected recombination hotspot (16% are within 5 kb), this consti-
tutes a marked enrichment and implies that at least 10% of all SNPs

within 1 kb of hotspots are untaggable. The implication for asso-
ciation mapping is that when a region of interest contains a known
hotspot it may be prudent to perform additional sequencing within
the hotspot. Many of the variants identified in this manner will be
untaggable SNPs that should be genotyped directly in association
studies. From a biological perspective, the proximity of untaggable
SNPs to the centre of hotspots suggests that they may lie within gene
conversion tracts associated with the repair of double-strand breaks.
Double-strand breaks are thought to resolve as crossover events only
5–25% of the time35. Consequently, SNPs lying near the centre of a
hotspot are liable to be included within gene conversion tracts and
will experience much higher effective recombination rates than pre-
dicted from crossover rates alone.

The distribution of recombination

In the Phase II HapMap we identified 32,996 recombination hot-
spots3,6,36 (an increase of over 50% from Phase I) of which 68%
localized to a region of #5 kb. The median map distance induced
by a hotspot is 0.043 cM (or one crossover per 2,300 meioses) and
the hottest identified, on chromosome 20, is 1.2 cM (one crossover
per 80 meioses). Hotspots account for approximately 60% of re-
combination in the human genome and about 6% of sequence
(Supplementary Fig. 6). We do not find marked differences among
chromosomes in the concentration of recombination in hotspots,
which implies that obligate differences in recombination among
chromosomes of different size result from differences in hotspot
density and intensity6.

The increased number of well-defined hotspots allows us to under-
stand better the influence of genomic features on the distribution of
recombination. Previous work identified specific DNA motifs that
influence hotspot location6,37 as well as additional influences of local
sequence context including the location of genes6 and base composi-
tion38. The Phase II HapMap provides the resolution to separate these
influences. Figure 5a shows the distribution of recombination, hot-
spot motifs and base composition around genes. Within the tran-
scribed region of genes there is a marked decrease in the estimated
recombination rate. However, 59 of the transcription start site is a
peak in recombination rate with a corresponding local increase in the
density of hotspot motifs. This region also shows a marked increase
in G1C content, reflecting the presence of CpG islands in promoter
regions. There is also an asymmetry in recombination rate across
genes, with recombination rates 39 of transcribed regions being ele-
vated (as are motif density and G1C content) compared to regions 59
of genes. Studies in yeast have previously suggested an association
between promoter regions and recombination hotspots39. Our results
suggest a significant, although weak, relationship between promoters
and recombination in humans. Nevertheless, the vast majority of
hotspots in the human genome are not in gene promoters. The asso-
ciation may reflect a general association between regions of accessible
chromatin and crossover activity.
Systematic differences in recombination rate by gene class.
Previous work has demonstrated differences in the magnitude of
linkage disequilibrium, as measured at a megabase scale, among
genes associated with different functions3,40. Using the fine-scale gen-
etic map estimated from the Phase II HapMap data we can quantify
local increases in recombination rate associated with genes of differ-
ent function using the Panther gene ontology annotation41. Average
recombination rates vary more than sixfold among such gene
classes (Fig. 5b), with defence and immunity genes showing the high-
est rates (1.9 cM Mb21) and chaperones showing the lowest rates
(0.3 cM Mb21). Gene functions associated with cell surfaces and
external functions tend to show higher recombination rates (immun-
ity, cell adhesion, extracellular matrix, ion channels, signalling)
whereas those with lower recombination rates are typically internal
to cells (chaperones, ligase, isomerase, synthase). Controlling for sys-
tematic differences between gene classes in base composition and
gene clustering, the differences between groups remain significant.
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We also find that the density of hotspot-associated DNA motifs varies
systematically among gene classes and that variation in motif density
explains over 50% of the variance in recombination rate among gene
functions (Supplementary Fig. 7).

These results pose interesting evolutionary questions. Because
recombination involves DNA damage through double-strand breaks,
hotspots may be selected against in some highly conserved parts of
the genome. In regions exposed to recurrent selection (for example,
from changes in environment or pathogen pressure) it is plausible
that recombination may be selected for. However, because the fine-
scale structure of recombination seems to evolve rapidly42,43 it will be
important to learn whether patterns of recombination rate hetero-
geneity among molecular functions are conserved between species.

Natural selection

The Phase I HapMap data have been used to identify genomic regions
that show evidence for the influence of adaptive evolution3,9, prim-
arily through extended haplotype structure indicative of recent posi-
tive selection. Using two established approaches9,44, we identified
approximately 200 regions with evidence of recent positive selection
from the Phase II HapMap (Supplementary Table 9). These regions
include many established cases of selection, such as the genes HBB
and LCT, the HLA region, and an inversion on chromosome 17.
Many other regions have been previously identified in HapMap
Phase I including LARGE, SYT1 and SULT1C2 (previously called
SULT1C1). A detailed description of the findings from the Phase II
HapMap is published elsewhere45.

The Phase II HapMap also provides new insights into the forces
acting on SNPs in coding regions. Effort was made to genotype as
many known or putative non-synonymous SNPs as possible. Of the
56,789 non-synonymous SNPs identified in dbSNP release 125,
attempts were made to genotype 36,777, which resulted in 17,427
that are QC1 in all three analysis panels and polymorphic. We
selected only those SNPs for which ancestral allele information was
available (approximately 90%). For comparison, we used patterns
of variation at synonymous SNPs. As previously reported46,47, non-
synonymous SNPs show an increase in frequency of rare variants and

a slight decrease of common variants compared to synonymous
SNPs, compatible with widespread purifying selection against non-
synonymous mutations (Fig. 6a). In contrast, we find no excess of
high-frequency derived non-synonymous mutations, as might be
expected if positive selection were widespread.

Natural selection also influences the extent to which allele frequen-
cies differ between populations, not only through local selective pres-
sures that drive alleles to different frequencies48,49, but also through
local variation in the strength of purifying selection. We compared the
distribution of population differentiation (as measured by FST, the
proportion of total variation in allele frequency that is due to differ-
ences between populations) at non-synonymous SNPs and synonym-
ous SNPs matched for allele frequency (Fig. 6b). We find a systematic
bias for non-synonymous SNPs to show stronger differentiation than
synonymous SNPs. Among SNPs showing high levels of differenti-
ation there is a strong tendency for the derived allele to be at higher
frequency in non-YRI populations. Among SNPs with FST . 0.5
between CEU and YRI, in 79% and 75% of non-synonymous and
synonymous variants, respectively, the derived allele is more common
in CEU. Although this difference between non-synonymous and
synonymous SNPs is not significant, among the eight exonic SNPs
with FST . 0.95, all are non-synonymous. We see no such bias
towards increased MAF in CEU at high-differentiation SNPs, indi-
cating that SNP ascertainment is unlikely to explain the difference.
Rather, this effect can largely be explained by more genetic drift in
the non-African populations, as confirmed by simulations (data
not shown). In addition, reduced selection against deleterious muta-
tions and local adaptation within non-African populations will both
act to increase the frequency of derived variants in non-African
populations.

To assess the evidence for widespread local adaptation influencing
non-synonymous mutations we considered the distribution of
integrated extended haplotype homozygosity (iEHH) statistics9,44

(Fig. 6c). We find no evidence for systematic differences between
non-synonymous and synonymous SNPs, suggesting that local
adaptation does not explain their higher differentiation. Although
hitch-hiking effects will tend to obscure differences between selected
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and neutral SNPs, these results are consistent with a scenario in which
the higher differentiation of non-synonymous SNPs is primarily dri-
ven by a reduction in the strength or efficacy of purifying selection in
non-African populations.

Discussion and prospects

The International HapMap Project has been instrumental in making
well-powered, large-scale, genome-wide association studies a reality.
It is now clear that the HapMap can be a useful resource for the design
and analysis of disease association studies in populations across the
world50–53. Furthermore, the decreasing costs and increasing SNP
density of standard genotyping panels mean that the focus of atten-
tion in disease association studies is shifting from candidate gene
approaches towards genome-wide analyses. Alongside developments
in technology, new statistical methodologies aimed at improving
aspects of analysis, such as genotype calling21,54, the identification
of and correction for population stratification and relatedness55,56,
and imputation of untyped variants21–23, are increasing the accuracy
and reliability of genome-wide association studies.

Within this context, it is important to consider the future of the
HapMap Project. Currently, additional samples from the popula-
tions used to develop the initial HapMap, as well as samples from
seven additional populations (Luhya in Webuye, Kenya; Maasai in
Kinyawa, Kenya; Tuscans in Italy; Gujarati Indian in Houston, Texas,
USA; Denver (Colorado) metropolitan Chinese community; people
of Mexican origin in Los Angeles, California, USA; and people with
African ancestry in the southwestern United States; http://ccr.coriell.
org/Sections/Collections/NHGRI/?SsId511) will be sequenced and

genotyped extensively to extend the HapMap, providing information
on rarer variants and helping to enable genome-wide association
studies in additional populations. There are also ongoing efforts by
many groups to characterize additional forms of genetic variation,
such as structural variation, and molecular phenotypes in the
HapMap samples. Finally, in the future, whole-genome sequencing
will provide a natural convergence of technologies to type both SNP
and structural variation. Nevertheless, until that point, and even
after, the HapMap Project data will provide an invaluable resource
for understanding the structure of human genetic variation and its
link to phenotype.

METHODS SUMMARY

Of approximately 6.9 million SNPs in dbSNP release 122 approximately 4.7

million were selected for genotyping by Perlegen. 2.5 million SNPs were excluded

because no assay could be designed and a further 350,000 were excluded for other

reasons (see Methods). Perlegen performed genotyping using custom high-

density oligonucleotide arrays as previously described15. Additional genotype

submissions are described in the text. QC filters were applied as previously

described3. Where multiple submissions met the QC criteria the submission with

the lowest missing data rate was chosen for inclusion in the non-redundant

filtered data set. Haplotypes were estimated from genotype data as described

previously3. Ancestral states at SNPs were inferred by parsimony by comparison

to orthologous bases in the chimpanzee (panTro2) and rhesus macaque

(rheMac2) assemblies. Recombination rates and the location of recombination

hotspots were estimated as described previously3. Additional details can be

found in the Methods section and the Supplementary Information. The data

described in this paper are in release 21 of the International HapMap Project.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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René-Lévesque Ouest, Montréal, Québec H3B 1S6, Canada. 64Ministry of Education,
Culture, Sports, Science, and Technology, 3-2-2 Kasumigaseki, Chiyodaku, Tokyo

100-8959, Japan. 65Ministry of Science and Technology of the People’s Republic of
China, 15 B. Fuxing Road, Beijing 100862, China. 66The Human Genetic Resource
Administration of China, b7, Zaojunmiao, Haidian District, Beijing 100081, China. 67US
National Institutes of Health, National Human Genome Research Institute, 5635 Fishers
Lane, Bethesda, Maryland 20892, USA. 68US National Institutes of Health, Office of
Behavioral and Social Science Research, 31 Center Drive, Bethesda, Maryland 20892,
USA. 69Novartis Pharmaceuticals Corporation, Biomarker Development, One Health
Plaza, East Hanover, New Jersey 07936, USA. 70US National Institutes of Health, Office
of Technology Transfer, 6011 Executive Boulevard, Rockville, Maryland 20852, USA.
71University of Maryland School of Law, 500 West Baltimore Street, Baltimore, Maryland
21201, USA. 72US National Institutes of Health, National Human Genome Research
Institute, 31 Center Drive, Bethesda, Maryland 20892, USA.

NATURE | Vol 449 | 18 October 2007 ARTICLES

861
Nature   ©2007 Publishing Group



METHODS
SNP selection and genotyping. All SNPs in dbSNP release 122 were considered

for genotyping by Perlegen. Among these the following were excluded: SNPs for

which no assay could be designed (primarily through location in repeat-rich

regions; approximately 2.5 million); SNPs shown previously in samples from

related populations15 to be most probably in perfect association (r2 5 1) with a

Phase I SNP (approximately 122,000); all but one of SNPs shown previously15 to

be most probably in perfect association (r2 5 1) with each other but not with a

Phase I SNP (approximately 62,000); and SNPs shown previously15 to have

MAF , 0.05 (approximately 119,000). In addition, a few SNPs were excluded
for efficiency (for example, if an amplicon contained a single SNP).

Approximately 30,000 SNPs that had been typed in Phase I were deliberately

retyped in Phase II to allow detailed comparisons of data quality, and an addi-

tional 15,000 SNPs that showed discrepancies between multiple genotyping

attempts in Phase I were re-typed in Phase II. A further 2,000 SNPs identified

by the Mammalian Gene Collection were also typed.

Perlegen performed genotyping using custom high-density oligonucleotide

arrays as previously described15. Initially, a pilot phase was carried out on chro-

mosome 2p to optimize experimental workflow and data handling. Details

of amplicons used in the experiment and PCR primers can be found at

http://genome.perlegen.com/pcr/ and also on the HapMap website. The arrays

were tiled with sets of 25-bp probes for each SNP, with either 40 or 24 probes per

SNP. These consisted of four sets of features, corresponding to forward and

reverse strand tilings of sequences complementary to each of the two SNP alleles.

Within a feature set, the position of the SNP within the oligonucleotide varied

from position 11 to position 15. Mismatch probes were used to measure back-

ground, and by comparison with the perfect match probes, to detect the presence

or absence of a specific PCR product. The 40-feature and 24-feature tilings both
provided 10 perfect-match features for each SNP allele and differed only in the

number of mismatch probes.

Genotypes were scored by clustering intensity measurements as previously

described15. In addition, quality scores similar to Phred scores were computed

for each genotype call, based on a combination of experimental metrics corre-

lated to data quality. Assays with overall call rates less than 80% or with poor

average quality scores were flagged as failed. About 38% of the tiled assays failed

these basic criteria, and the remainder were processed using the more rigorous

HapMap Project data quality control filters. For analysis of the whole genome,

probes for 4,373,926 distinct SNPs were tiled onto 32 chip designs, with 32 SNPs

tiled in replicate onto each chip design for quality control (QC). Perlegen did not

type the samples by plates as had been done for the Phase I genotyping, instead

typing large numbers of SNPs one sample at a time. Consequently, blank wells on

each plate were not included as a component of QC for this genotyping. In the

Phase I HapMap a single JPT sample had been excluded because of technical

problems. Perlegen typed a replacement sample (from the original JPT collec-

tion) for all new SNPs. This sample was not specifically genotyped on the Phase I

SNPs, although a substantial fraction of these was typed in Phase II.
Additional genotype submissions came from the Affymetrix GeneChip

Human Mapping 500K array called with the BRLMM algorithm. In release

21a additional genotype submissions were incorporated from the MHC haplo-

type consortium11, the Illumina HumanHap300 BeadChip, the Illumina

Human-1 Genotyping BeadChip and the 10K non-synonymous SNP set from

Affymetrix (ParAllele).

Details of primer design, DNA amplification, DNA labelling and hybridiza-

tion and signal detection for the Perlegen platform can be found in Supple-

mentary Text 7.

QC analyses. Genotype submissions were assessed for mendelian errors (where

possible), missing data rates and Hardy–Weinberg proportions. QC filters were

applied as previously described3; to achieve QC1 status a SNP had to have fewer

than two mendelian errors, less than 20% missing data and P . 0.001 for Hardy–

Weinberg analysis. The consensus data set consists only of SNPs for which QC1

submissions were available from all analysis panels. Where multiple submissions

met the QC criteria the submission with the lowest missing data rate was chosen

for inclusion in the non-redundant filtered data set. Comparison of the Phase II

HapMap with the Affymetrix 500K genotypes has shown approximately 20 SNPs

where the reported minor allele is discrepant (referred to as ‘allele-flipping’).

Over the entire data set, we expect that 500–2,000 SNPs have this problem and

the vast majority will occur in SNPs from Phase I of the project. The Data

Coordination Center (DCC) is working to resolve as many of these as possible.

Analyses of data quality. See Supplementary Text 2.

Analyses of population stratification, relatedness and homozygosity. See

Supplementary Texts 3–6.

Analysis of recombination rate and gene ontology. We used the Panther

Database41 to obtain details of the gene molecular function and biological pro-

cess. Genes are grouped into 28 top-level molecular function groups and 30 top-

level biological process groups, with each gene allowed to exist in more than one

group. We identified 14,979 non-overlapping autosomal genes from the Panther

RefSeq Annotation for which we could obtain recombination rates. Of these,

9,735 had at least one assigned molecular function and 9,432 had at least one

assigned biological process. Genes without a molecular function or biological

process were removed from the corresponding analysis. To control for gene size,

we estimated the mean recombination rate over a 20-kb region centred on the

mid-point of each gene transcription region.

Genes were grouped based on molecular function and biological process. A

mean recombination rate was calculated for each group. The significance of

the result from each group was calculated via a permutation test involving 105

random groupings of genes. No correction was made for multiple testing. To

account for the effect of G1C content on recombination, we performed a

linear regression between the G1C content and recombination rate of all

genes in each sample. Using the estimated regression parameters, the propor-

tion of recombination explained by G1C content was subtracted from each

gene.

Identification of non-synonymous SNPs and tests for natural selection. Using

annotations from dbSNP release 125 we identified 17,427 polymorphic non-

synonymous SNPs in release 21 and 15,976 polymorphic synonymous SNPs. Of

these, 15,583 non-synonymous and 14,324 synonymous SNPs were autosomal

and could have ancestral allele status unambiguously assigned by parsimony

through comparison to the chimpanzee and macaque genomes. We used the

phased haplotypes for analysis in which missing data had been imputed. FST was

calculated using the method of Weir and Cockerham59.

To detect recent partial selective sweeps we used the long-range haplotype

(LRH) test44,49 and the integrated haplotype score (iHS) test9. On simulated

data45, we found that the tests have similar power to detect recent selection

but the iHS test has slightly lower power at low haplotype frequency and the

LRH test has slightly lower power at high frequency. This can be seen in applica-

tions to HapMap Phase I data3,9, where the iHS test misses the well-known cases

of HBB and CD36 and the LRH test misses the SULT1C2 region. Although both

tests are based on the concept of EHH44, we observed that the false positives

produced by the two tests tend not to overlap and thus that signals detected by

both tests have a very low false-positive rate.
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