Whole-Exome Sequencing: Technical Details

Jim Mullikin
Director, NIH Intramural Sequencing Center
Head, Comparative Genomics Unit

Whole Exome Sequencing, Why?

- Focuses on the part of the genome we understand best, the exons of genes
- Exomes are ideal to help us understand high-penetrance allelic variation and its relationship to phenotype.
- A whole exome is 1/6 the cost of whole genome and 1/15 the amount of data

Biesecker et al. Genome Biology 2011, 12:128

Twinbrook Research Building

NISC occupies entire 5th floor

5625 Fishers Lane, Rockville MD

NISC Sequence Production

Feb. 2010

NISC Sequence Production

March 2011

Computational Resources

for 6 GAiiX and 3 HiSeq2000

- Linux cluster
 - 1000 cores
 - 250 for production
 - 900TB disk
 - 250TB for production with 75TB available
 - 15TB/month long term storage
 - Network
 - 1 and 10 Gigabit-Ethernet

Exome Sequencing Pipeline

Sample DNA Fragmentation
Illumina Library Preparation
Exome Enrichment
Cluster Generation
Sequencing and Basecalling
Sequence Read Alignment
Variation Detection

HiSeq Flow Cell

- 8 lanes
- 1.5 billion clusters
- Up to 300Gb per flow cell

Refining the Alignment (diagCM)

- ELAND is part of the standard pipeline
- ELAND accurately places reads in the correct genomic location
- Use cross-match, a Smith-Waterman aligner, to improve local alignment

MPG of Haploid Regions

- · Human autosomes are normally diploid
- MPG is designed to call two alleles for the autosomes, and X chromosome if the sample is from a female
- For samples from males, MPG is run in haploid mode on the non-sudoautosomal regions of X and Y
- Thus only testing for the four nucleotides

Exome Variation Statistics TruSeq 62Mb, Male Sample

Туре	Total Genotype Calls	SNVs	Within-sample Heterozygosity
Total	133,047,403	142,361	0.00072
Auto	125,491,045	139,295	0.00076
chrX	6,842,299	2,600	NA
chrY	710,243	1,435	NA

Exome Variation Statistics TruSeq 62Mb, Female Sample

Туре	Total Genotype Calls	SNVs	Within-sample Heterozygosity
Total	125,681,915	136,993	0.00075
Auto	120,559,746	132,616	0.00076
chrX	5,096,376	2,701	0.00034

Example Heterozygous Deletion

61270211	61270221	61270231		61270251	61270261	61270271	61270281	۵,
							ACTCCCGCCTTCACCA	
								٠.
G.CG		,,,,,,,,,	,,,,,,,,,	,,,,,,,,,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,
						,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,
							• • • • • • • • • • • • • • • • • • • •	• •
					-	10.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0
							• • • • • • • • • • • • • • • • • • • •	
								-
							• • • • • • • • • • • • • • • • • • • •	
							,,,,,,,,,	
							, ,,,,,,,,,	
								"
							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.4
							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
								-
								1000
							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Coverage of MPG >= 10 Genotype Calls

	Total Raw Sequence	Aligned Sequence	Genotype calls CCDS	Genotype calls UCSC coding
SureSelect 38Mb	6.7 Gb	5.0 Gb (131x)	89%	74%
SureSelect 50Mb	10.5 Gb	6.1 Gb (122x)	89%	85%
TruSeq 62Mb	9.0 Gb	7.1 Gb (114x)	91%	89%
Whole Genome Shotgun	192 Gb	133 Gb (44x)	86%	83%

Genotype Concordance

	Total Agreement with Genotype Chip (CCDS)
Whole Genome Shotgun	99.908%
SureSelect 38Mb	99.910%
SureSelect 50Mb	99.857%
TruSeq 62Mb	99.865%

Whole Exome Sequencing

- Being applied to
 - Undiagnosed Diseases Program (100's of samples)
 - ClinSeq (>1000 samples)
 - Variety of other PI driven projects (e.g. cancer)
- Data generation rate per year
 - 200 exomes per GAiiX
 - 1200 exomes per HiSeq 2000
- · Analysis results
 - Genotype data for 90% of consensus coding exon bases (CCDS)
 - Accuracy of genotype calls over 99.5%

Exome Sequencing Pipeline

Sample DNA Fragmentation
Illumina Library Preparation
Exome Enrichment
Cluster Generation
Sequencing and Basecalling
Sequence Read Alignment
Variation Detection

Variant Annotation and Working With Whole-Exome Data

- One sample produces > 100k variants
- One hundred samples gives rise to 600k or more
- How does one work with such large datasets?
- The next speaker, Dr. Jamie Teer, will address these next steps

Acknowledgements

NIH Intramural Sequencing Center

- Sequencing Operations
 - Bob Blakesley
 - Alice Young
 - Lab Staff
- Bioinformatics
 - Gerry Bouffard
 - Baishali Maskeri
 - Jenny McDowell
 - Meg Vemulapalli
- IT Linux Support
 - Jesse Becker
 - Matt Lesko

- Mullikin Lab
 - Nancy Hansen
 - Pedro Cruz
 - Praveen Cherukuri
- Biesecker Lab
 - Jamie Teer

http://research.nhgri.nih.gov/

