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Identification of the specific cytogenetic abnormality is one of the
critical steps for classification of acute myeloblastic leukemia (AML)
which influences the selection of appropriate therapy and provides
information about disease prognosis. However at present, the
genetic complexity of AML is only partially understood. To obtain
a comprehensive, unbiased, quantitative measure, we performed
serial analysis of gene expression (SAGE) on CD15� myeloid pro-
genitor cells from 22 AML patients who had four of the most
common translocations, namely t(8;21), t(15;17), t(9;11), and
inv(16). The quantitative data provide clear evidence that the
major change in all these translocation-carrying leukemias is a
decrease in expression of the majority of transcripts compared
with normal CD15� cells. From a total of 1,247,535 SAGE tags, we
identified 2,604 transcripts whose expression was significantly
altered in these leukemias compared with normal myeloid pro-
genitor cells. The gene ontology of the 1,110 transcripts that
matched known genes revealed that each translocation had a
uniquely altered profile in various functional categories including
regulation of transcription, cell cycle, protein synthesis, and apo-
ptosis. Our global analysis of gene expression of common trans-
locations in AML can focus attention on the function of the genes
with altered expression for future biological studies as well as
highlight genes�pathways for more specifically targeted therapy.
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The pathogenesis of acute myeloid leukemia (AML) in many
patients is linked to oncogenic fusion proteins, generated as

a consequence of chromosome translocations or inversions (1).
Many different translocations have been described in AML, the
most frequent being the t(9;11), t(15;17), t(8;21), and inv(16),
which, taken together with their variants, account for �20–30%
of AML cases (2, 3), although a recent analysis by Mitelman et
al. (4) suggests that the proportion may be closer to 10%. These
recurring translocations are now the basis for classification of
some patients with AML. Despite genetic heterogeneity, there
is increasing evidence for some common molecular and biolog-
ical mechanisms in the genesis of AML. In particular, one of the
components of each fusion protein is almost invariably a tran-
scription factor, frequently involved in the regulation of myeloid
cell differentiation (5). As a consequence, AML-associated
fusion proteins function as aberrant transcriptional regulators
with the potential to interfere with the normal processes of
myeloid cell differentiation.

Genome-wide gene expression profiling is becoming useful for
the classification of many types of cancer (6, 7), including AML
and acute lymphoblastic leukemia (8–15). Although AML sub-
types can be distinguished by oligonucleotide microarrays, the
results of analysis of different translocations between laborato-
ries are not always similar. This lack of consistency has probably
resulted from the heterogeneous nature of clinical samples (age,

sex, stage of disease, percentage of blasts in the sample, other
chromosomal abnormalities, etc.) as well as for technical rea-
sons, such as the various platforms and algorithms used in the
analysis. Moreover analysis of the same data set using different
algorithms also yields different results (U. Kees, personal com-
munication). However, this question of reproducibility has re-
cently been reviewed by Sherlock (16), who concludes that when
very carefully controlled experiments are done in various labo-
ratories, in general the results are comparable. However, when
different materials and different platforms are used, the repro-
ducibility is poor.

We used serial analysis of gene expression (SAGE) to obtain
quantitative, unbiased gene expression in bone marrow samples
from 22 patients with four subtypes of AML, namely de novo
AMLM2 with t(8;21), AMLM3 or M3V with t(15;17),
AMLM4Eo with inv(16), and AML with t(9;11) or treatment-
related t(9;11). The results of this analysis are presented here.

Results
Characterization of the Leukemic Samples. We studied samples
obtained from diagnosis of 22 AML cases representing four de
novo and one treatment-related subtypes: five each de novo
t(8;21), t(15;17), inv(16), four de novo t(9;11), and three treat-
ment-related t(9;11). All samples were verified by cytogenetic
analysis showing the balanced abnormalities as the sole karyo-
type change (except for no. 10) in �75% of the cells, and
reverse-transcriptase PCR showing the presence of the expected
fusion transcript (Tables 1 and 2, which are published as
supporting information on the PNAS web site).

Distribution of the SAGE Tags and Match of SAGE Tags to Known
Expressed Sequences. We collected a total of 1,247,535 SAGE tags
from the 22 AML libraries. From these SAGE tags, we identified
209,486 unique SAGE tags. Matching these SAGE tags to the
reference database shows that 136,010 SAGE tags matched to
known gene transcripts, and 73,476 had no match representing
potentially novel transcripts (Table 2). The number of SAGE
tags per library ranged from 23,176 to 84,249. Therefore, the
libraries were normalized to �50,000 tags per library for com-
parison, as described in Methods. The number of unique tran-
scripts in each translocation varied substantially; however, the
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number of unique transcripts in the t(8;21) is smaller and the
transcripts are more similar between patients compared with
other translocations, suggesting that a smaller number of unique
transcripts was actively expressed in t(8;21) patients (Table 2).
We compared data from our patient samples with our earlier
SAGE analysis of CD15� normal bone marrow samples and
selected SAGE tags that showed a difference in expression up or
down at least 5-fold and that were significantly different at the
5% level in the individual leukemia samples.

We have identified 2,604 transcripts that were significantly
different between the four translocations, except for 56 common
to all. A total of 1,882 of the transcripts showed a decrease, and
722 of those showed an increase in expression level. To provide
a graphical representation of these selected SAGE tags in a
manner comparable to that used for microarray expression data,
we converted our quantitative data into a ‘‘heat’’ map (Fig. 1).
It is clear that the selected SAGE tags can discriminate between
the four translocations. Fig. 1 also clearly shows that t(8;21) has
the largest numbers of overexpressed transcripts, and t(9;11) and
inv(16) have the fewest relative to the t(8;21) and t(15;17).
Among the 2,604 SAGE tags, 2,248 SAGE tags were known
genes or ESTs, and 356 were novel. The identity of 378 of the
multiple matched and novel transcripts was resolved by using
GLGI. The novel SAGE tags detected in each translocation were:
195 in t(8;21), 53 in t(15;17), 54 in inv(16), and 51 in t(9;11), and
the known genes and ESTs were 1,072 in t(8;21), 546 in t(15;17),
284 in inv(16) and 293 in t(9;11); the remainder were common
to all translocations (Fig. 2a). The number of up-and down-

regulated transcripts in each translocation is summarized in Fig.
2b. The expression pattern was relatively uniform between
patients with the same translocation compared with other trans-
locations, as illustrated in Table 3, which is published as sup-
porting information on the PNAS web site, showing data from
1,110 SAGE tags for all four translocations. The importance of
quantitative SAGE data is illustrated in Table 3, which allows for
direct comparison of expression levels with no manipulation of
the primary information except for normalization of all leukemia
samples to �50,000 tags. We also identified the transcripts whose
expression pattern, either increased or decreased, was common
in all four translocations (Table 4, which is published as sup-
porting information on the PNAS web site). t(8;21) had the
largest number of transcripts that showed a statistically signifi-
cant difference from the normal CD15� cells and had the highest
expression level, whereas inv(16) and t(9;11) had the smallest
number of transcripts with altered expression (Fig. 1). As a
consequence, a smaller number of transcripts were specific
discriminators for t(9;11), inv(16), and t(15;17) than for t(8;21).

Abnormally Expressed Genes in Each Type of Translocation Related to
Cellular Function. To determine the nature of the highly expressed
genes in each translocation, we selected the top 20 genes that
were significantly highly expressed in each translocation (Table
5, which is published as supporting information on the PNAS
web site). Interestingly, nine of the 20 genes highly expressed in
t(8;21) were related to ribosomal proteins. This finding is not
unexpected, because these are cells involved in very active
protein synthesis. However, it is perplexing that only some of
them are overexpressed and they are overexpressed only in the
t(8;21). The list of those SAGE tags that are underexpressed also
includes ribosomal proteins, most of which (eight of 20) are in
the t(8;21), but two and three are in the inv(16) and t(15;17),
respectively. Note that hemoglobin alpha was the top gene and
hemoglobin gamma 2 was the third nonribosomal protein gene
in the list. Expression of hemoglobin genes was not expected.
Prothymosin alpha (PTMA) is a histone H1-binding protein that
interacts with the transcription coactivator CREB-binding pro-
tein and potentiates transcription (17). PTMA, a regulator of
estrogen receptor transcriptional activity (18) and a negative
regulator of caspase-9 activation by inhibiting apoptosome for-
mation, was highly expressed in inv(16) as compared with normal
CD15� cells. CCNB1IP1, which interacts with cyclin B1, the E2
ubiquitin-conjugating enzyme UBCH7, and PFKL were each
highly expressed in the inv(16), t(15;17) and t(9;11), respectively.

Recent studies of AML have indicated how disruption of
transcription-factor function can disrupt normal cellular differ-
entiation and lead to malignancy (19). We searched our database
to identify those genes related to cellular differentiation by
focusing on the genes that were related to cell proliferation, cell
cycle, and cell death. Different genes related to cell proliferation
were abnormally expressed in all four translocations. The ex-
amples of the genes specific in each translocation are described
below.
t(9;11). Cell survival is associated with defects in either the
extrinsic or the intrinsic pathways of apoptosis. Expression of
ROCK1, STK17B, and CASP8 genes was down-regulated. CASP8
triggers apoptosis. Down-regulation of CASP8 could suppress
apoptosis. AIF1, which can arrest cell cycle, was also down-
regulated. Expression of the GSTP1, TYMS, NUP210, C5ORF13,
MYB, and WDR1 genes was up-regulated. The MYB gene
encodes for proteins that are critical for hematopoietic cell
proliferation and development. Previous experiments showed
that when human leukemia (K562)-SCID chimeric mice were
exposed to antisense MYB RNA, they survived 3.5 times longer
than untreated mice (20). These data support earlier observa-
tions that overexpression of MYB contributes to leukemogenesis
in AML.

Fig. 1. The expression level of the 2,604 SAGE tags whose expression was
statistically significantly different from CD15� control cells has been con-
verted to a ‘‘heat’’ map with red representing overexpression and green
underexpression of the transcript. Patient samples sorted by translocation are
in vertical columns and the individual SAGE tags are in the horizontal columns.
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inv(16). Contrary to the previously reported results, MYH11 was
not a predictor for AML M4eo with inv(16) in our data.
Kohlmann et al. (10) suggested that increased expression of
MYH11 in inv(16) compared to other translocations likely is due
to hybridization of the MYH11-oligonucleotides on the microar-
ray to the M4eo-specific fusion transcript CBFB-MYH11. How-
ever, SAGE detects the 3� part of the normal transcripts as well
as the fusion transcripts. We had searched SAGEmap database
for the alternatively spliced transcripts of MYH11 to identify the
expressed transcript(s) in inv(16) samples. We detected one copy
for CAGACCACAA, and no copies for ATCTCGGATC and
GCGCAGAAGG of MYH11 in inv(16) samples. None of these
SAGE tags was detected in CD15� normal cells. In our study,
expression of MAPK3, FOSL2, RASSF5, and CUL2 were down-
regulated, whereas expression of SOX4, PAK1, and RAB13 were
up-regulated in inv(16) cells. CUL2 is expressed in proliferating
cells and is required at two distinct points in the cell cycle, the
G1-to-S-phase transition and in mitosis. CUL2 mutant cells
undergo a G1-phase arrest that correlates with accumulation of
CKI1, a member of the CIP�KIP family of cyclin-dependent-
kinase inhibitors (21), which should lead to decreased cell
growth. In contrast, PAK1 is essential for RAS-induced up-
regulation of CCND1 during the G1-to-S transition (22). CCND1
(also known as BCL1 or PRAD1) is a proto-oncogene that
encodes a regulatory subunit of the cyclin-dependent kinase
holoenzyme. Activation of the holoenzyme leads to phosphor-
ylation and inactivation of the RB tumor suppressor protein and
thereby promotes entry into S phase (23). Increased expression
of PAK1 could contribute to the induced expression of CCND1
and thus increased cell growth. Thus, changes in expression of
these genes would appear to result in opposite effects.
t(15;17). MCL1, S100A6, GNAI2, OGFR were underexpressed,
and TNFSF10, MPO, FBXL10 were overexpressed. OGFR is an
inhibitory peptide that modulates cell proliferation and tissue
organization during development, cellular renewal, wound heal-
ing, angiogenesis, and cancer. The down-regulation of OGFR
resulting in decreased growth inhibition could contribute to cell
proliferation. MPO is present in azurophilic granules that appear
in the promyelocyte stage of differentiation, and is the most
common functional protein of myeloid cells. TNFSF10 (TRAIL)
can induce apoptosis in a wide variety of transformed cell lines
of diverse lineages, but its expression does not appear to kill
normal cells even though it is expressed at significant levels in

most normal tissues (24). Because the t(15;17) results in the
PML�RARA fusion gene, we investigated the expression of the
both genes. We obtained two SAGE tags (AGCACAGGGA and
TGGCAGGAAA) for PML and two SAGE tags (TGAC-
CCCGCA and CGCGTGCGCA) for RARA from SAGEmap
and compared their expression between the normal and t(15;17)
patient’s samples. Only AGCACAGGGA of PML showed one
copy in both normal and patient’s sample. The other SAGE tags
were not detected in our analysis.
t(8;21). Like CBFB-MYH11 in the inv(16), the increased expres-
sion of CBFA2T1 (formerly ETO) in AML with t(8;21) may be
due to the hybridization effect of the subtype-specific AML1-
ETO fusion transcript (25) in microarray experiments. However,
we detected no expression of AML1 or ETO in our SAGE
analysis. MCL1, PNUTL1, FOSB, and DAP were underex-
pressed, and TRAF4, BCL2L11, and TPDP1 were overexpressed
genes. Induction of BCL2L11 causes apoptosis, whereas MCL1
is an antiapoptotic protein that opposes the effect of p53.
Because down-regulation of MCL1 and up-regulation of
BCL2L11 should increase apoptosis, the excess proliferation of
t(8;21) cells likely occurs by other mechanisms.

Abnormal Genes Common in Four Types of AMLs. We have identified
56 genes that were abnormally expressed in all four transloca-
tions, 52 were underexpressed, and four genes were up-
regulated. For example, NUBPL, TRAM2, and PTRF were
up-regulated, and Ficolin1, Lipocalin2, and FASN were down-
regulated (Table 4). PTRF is known to interact selectively with
ribosomal protein. FASN is involved in various cellular processes
such as apoptosis and proliferation. RNA interference-mediated
silencing of FASN attenuates growth and induces morphological
changes and apoptosis of prostate cancer cells (26), but it might
have different role in AML. Some genes show altered expression
in only some translocations. For example, TNFSF10, which plays
an important role in IFN-induced apoptosis (27) was overex-
pressed in t(15;17), t(9;11), and inv(16), but not in t(8;21)
samples.

Functional Classification of the Identified Genes in Each Translocation.
To gain further insight into the biological importance of these
2,604 differentially expressed SAGE tags, we analyzed the
functional categories of known genes by using gene ontology.
The function of the 1,110 known genes was classified by gene

Fig. 2. Classification of SAGE tags whose expression is significantly different from normal CD15� cells. (a) Classification of the 2,604 SAGE tags by whether they
represent a known gene, EST, or novel transcript. (b) Distribution of SAGE tags by whether their transcription is up or down in each translocation compared with
normal CD15� cells.
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ontology, including 179 in inv(16), 254 in t(15;17), 468 in t(8;21),
and 209 in t(9;11). These genes were grouped into 12 functional
categories, including defense response, intracellular transport,
cell cycle, apoptosis, signal transduction, and protein biosynthe-
sis. More than half of the genes were underexpressed in patient’s
sample compared to normal cells. For example, the majority of
genes related to cell cycle were underexpressed and a small
number of genes were overexpressed only in t(8;21) and inv(16)
samples. The majority of t(9;11) specific genes in almost all of the
categories showed underexpression (Fig. 3). The detailed infor-
mation is presented in Table 3.

Comparison of the Identified AML Genes with Previously Published
Results. It is of great importance to validate published candidate
genes intended for diagnostic purposes. We reviewed five pub-
lished reports describing gene expression in AML and we
selected 48 genes that were said to be important in distinguishing
patients with the individual translocations in AML in at least one
of these five published microarray analysis of leukemia samples;
more than half of the genes were identified in two independent
reports (Table 6, which is published as supporting information
on the PNAS web site) (8, 10–13). As mentioned previously, the
published data showed some agreement among the results, but
generally the analysis indicated that the results varied between
different reports, likely due to the use of different patient
samples (16), selection bias (28) and the analysis algorithm used
(29). Only six of 48 genes, CST7, LGALS9, CLECSF2, RUNX3,
SELL, and STAB1 were also appropriately differentially ex-
pressed in our SAGE data set; this raises the issue of the
sensitivity of SAGE compared with microarrays. It is estimated
that microarrays can detect a minimum of five transcripts per
cell; we used only 50,000 tags or �1�8 of the expected �400,000
transcripts per cell, so on average we would detect one transcript
if eight transcripts were present. CST7, SELL, and STAB1 were
underexpressed in our t(15;17) samples as well as in published
reports. However, CLECSF2 was an underexpressed discrimi-

nator of t(15;17) in published reports (8, 11) but it was an
underexpressed discriminator of t(8;21) in our samples. LGALS9
was underexpressed in t(15;17) in Valk et al. (13), but it was
overexpressed in our t(8;21) samples. RUNX3 was an overex-
pressed discriminator in t(15;17) of Debernardi et al. (11) and
underexpressed in inv(16) of Valk et al. (13), and it was under-
expressed in our t(8;21) samples. A number of these genes are
not included among our 2,604 discriminatory genes.

Discussion
The current approach to the diagnosis of AML in addition to the
standard clinical features and laboratory analyses requires ad-
ditional extensive procedures including pathology, immuno-
phenotyping, cytogenetics, and molecular diagnostics. Molecular
classification based on expression profiling offers a powerful
means of distinguishing distinct AML subclasses if it is based on
reliable data. Using gene expression profiling based on SAGE,
we have demonstrated that distinct features of gene expression
were identified in 22 AML samples with the t(9;11), t(8;21),
t(15;17), and inv(16). Moreover, the major observation of our
study was the remarkable underexpression of the majority of
transcripts in all leukemia except t(8;21). These data suggest that
the expression of many genes related to cellular differentiation
is suppressed or not activated.

Genome-wide analysis of gene expression in AML has been
reported by several groups using microarray analysis (8, 11–13,
30, 31). Each study described genes that were identified as being
reliable in distinguishing the common translocations. Unfortu-
nately, the data from various groups often failed to agree; as
noted by Sherlock (16), some of this variability may be due to use
of different materials and platforms. Our use of SAGE was a
unique strategy to acquire complete, unbiased, quantitative data
from �106 individual SAGE tags. Compared with microarray,
SAGE has many advantages: (i) it requires no prior genetic
information about the samples; (ii) the output of the data are
quantitative and therefore does not require any conversion; (iii)

Fig. 3. Representation of expression levels of 1,110 known genes by functional categories and by translocation.
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it is very sensitive, being able to detect lower abundant tran-
scripts; and (iv) once the data are generated, one can use them
continually for comparison between different samples.

Our study identified 2,604 unique transcripts whose expres-
sion varied significantly in different translocations. Contrary to
a previously published report (12), our study reveals that t(8;21)
has a highly correlated pattern of expression among different
patients, followed by the t(15;17). The t(9;11) and inv(16) have
more variable patterns between samples. The t(8;21) also has the
lowest number of unique transcripts, but they are expressed at
the highest level. Interestingly, �2�3 of the transcripts were
down-regulated in t(9;11), inv(16), and t(15;17) compared with
only 1�2 in the t(8;21) (Fig. 2b). It appears that the level of
certain transcripts is specific for only one translocation; however,
the expression level of other transcripts may be altered in two or
more translocations. We also identified 52 genes that were
underexpressed in all four translocations, including TRRAP,
YWHAQ, CAPN10, C1QTNF6, CFL1, and CAST. TRRAP is
known to be an essential cofactor for both the MYC and
E1A�E2F oncogenic transcription factor pathways. It has been
shown recently that MYC regulates E2F by activating micro-
RNAs (32). These common genes could potentially be used as
universal markers for leukemia diagnosis.

We had compared our SAGE data with 48 translocation
specific genes mentioned in at least one of five published papers
including the two just discussed (Table 6). Six genes, CLECSF2,
CST7, LGALS9, RUNX3, SELL, and STAB1, matched with our
SAGE data. We saw no expression at all in our SAGE data for
the two genes that were mentioned in all five reports, namely
CBFA2T1 and MYH11. One possible explanation is that SAGE
detected the 3� part of the UTR and did not necessarily detect
the same region of the transcripts recognized by the microarray.
For example, Schoch et al. (8) identified 36 genes that could
differentiate the three AML subtypes including t(8;21), inv(16),
and t(15;17). From these genes, they identified 13 genes as a
minimal set as the discriminators including PRKAR1B that is
down-regulated and MYH11 overexpression and HOXB2 that are
overexpressed in inv(16). Our study confirmed the overexpres-
sion of HOXB2 and the underexpression of PRKAR1B in
inv(16), but we did not detect MYH11 overexpression in inv(16).
We also confirmed that GNAI2 is down-regulated in t(15;17). In
an extension of their study, Kohlmann et al. (10) analyzed
expression patterns in eight different types of acute leukemia
(AML and acute lymphoblastic leukemia), and identified 25
genes that were sufficient for classifying AML subtypes. Of these
25 genes, MYH11 was a specific discriminator for inv(16) and
showed increased expression in inv(16) samples. Increased ex-
pression of CBFA2T1 and POU4F1 was observed in t(8;21)
samples; POU4F1 has been shown to confer an oncogenic
potential when cotransfected with HRAS. ARGHGAP4 is pre-
dominantly expressed in hematopoietic cells but showed a lower
expression level in AML with t(15;17) (33). We did not observe
any differences in expression levels for these 25 genes in our
SAGE data.

Gene ontology (GO) provides a tool for functional interpre-
tation of abnormally expressed genes in leukemia. We have
classified the functional category of 1,110 AML genes by GO. A
total of 1,110 genes were classified within 12 major functional
categories, whereas for the remaining 1,271 transcripts, their
gene equivalent could not be determined (Table 3). This analysis
demonstrates that SAGE could be used as a tool not only for
distinguishing subclasses of AML but also to identify new
transcripts whose function has yet to be defined.

In addition, we have identified 73,476 unique transcripts in this
study; however, the expression level of most transcripts was
relatively low being less than three copies of each transcript in
1,247,535 total transcripts. As a result, the majority of these tags
were not included in the final 2,604 tags after the selection

process. However, a low level of expression does not mean that
a transcript has no importance. The critical importance of
previously unidentified noncoding RNAs is becoming increas-
ingly recognized. The detection by Cheng et al. (34) of a very
large number of ‘‘intronic’’ transcripts provides further support
for the existence of noncoding RNAs, which include small
interfering RNAs (35), sense–antisense pairs (36), and
microRNAs (32, 37–39), some of which have been shown to play
a critical role in cancer (32) and leukemia (37, 38). The ground-
breaking paper from Golub and colleagues (38) on the use of
beads to measure microRNAs revealed that the analysis was
more efficient in distinguishing specific acute lymphoblastic
leukemia subtypes than the Affymetrix microarray. Further
studies are needed to reveal the importance of the novel
transcripts, which might have future applications, including the
identification of markers for early diagnosis, targets for drug
design, and indicators for treatment responsiveness and
prognosis.

In conclusion, our data illustrate and further confirm the
applicability of gene expression profiling by using SAGE for the
stratification of leukemia subtypes, as a means to identify some
targets that could then be used in a smaller format for diagnosis.
By combining these analyses with molecular biological methods,
this approach may provide a more valid basis for the accurate
diagnosis of subtypes of AML than current methods.

Methods
Isolation of Myeloid Progenitor Cells from Patient’s Samples. Samples
from four patients with de novo t(9;11), three patients with
treatment-related t(9;11), and five patients each each with
inv(16), t(15;17), and t(8;21) were selected based on the cyto-
genetic examination of metaphase bone marrow cells. The
samples were obtained at diagnosis with informed consent at
The University of Chicago or other hospitals and contained at
least 75% translocation-positive cells that, with one exception,
had no other chromosome abnormalities. Mononuclear cells
were purified by Nycoprep 1.077A (Axis-Shield, Oslo) according
to the manufacturer’s recommendation. Myeloid progenitor
cells were isolated from these mononuclear cells by using
immunomagnetic anti-CD15 beads (Dynal Biotech).

SAGE Analysis. Poly(A)� RNA isolation, cDNA synthesis, and
SAGE analysis were carried out according to Lee et al. (40). For
each SAGE library, �3,000 sequencing reactions were per-
formed. Tags were extracted from the raw sequence data with
SAGE2000 analysis software kindly provided by Kenneth W.
Kinzler (The Sidney Kimmel Comprehensive Cancer Center,
Johns Hopkins University School of Medicine, Baltimore). A
total of 1,247,535 SAGE tags was collected from 22 SAGE
libraries. SAGE tags were matched to the SAGE references
database (SAGEmap reliable) for gene identification. For sta-
tistical analysis, the SAGE tags from each SAGE library were
extracted to yield a total tag copy close to 50,000 per library.
Each library had �3,000 sequence files, each of which had
�15–30 SAGE tags. We randomly selected sequence files and
extracted the files until the total tag number reached 50,000.

Bioinformatics and Statistical Analyses. Individual libraries from
each of the four types of leukemia were compared to the normal
control CD15� library pooled from three normal samples (40).
Differentially expressed transcripts were identified by using two
criteria: first, �5-fold difference between the average tag count
in each type of leukemia library and the control, and then the
unadjusted P value �0.05 for the modified t test (41). The
modified t test, based on a �-binomial sampling model, appro-
priately accounts for the between-library variability, and assigns
different weights to each library according to its size. Because no
between-library variability could be assessed for the pooled
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library, a one-sample version of the t test was used and the
normal tag count was treated as a constant. This test could not
be applied to transcripts that were not detected in all leukemic
samples (i.e., all 0 counts); therefore, undetected transcripts
were selected if the corresponding control count was greater
than 5. These analyses resulted in the selection of 2,604 tags that
were uniquely over- or underexpressed in a single leukemia type
relative to each other and to normal CD15� cells. Additional
analyses were carried out comparing the level of expression of
these 2,604 tags with data we had previously obtained from our
SAGE analysis of normal CD34� bone marrow cells (42).

Gene Confirmation Using the GLGI Technique. For the selected
unique and multimatched SAGE tags, GLGI analysis (43) was
performed to obtain longer 3� ESTs corresponding to each
SAGE tag.

Clustering of SAGE Data. CLUSTER and TREEVIEW software were
used for visualization of the commonly deregulated transcripts in
AML (44). The average clustering of the SAGE data were based

on the fold change of tag counts for each transcript comparing
AML cells to normal CD15� cells. Two-way (by gene and AML
sample) hierarchical clustering was used to examine the rela-
tionships among the AML libraries.

Functional Classification of SAGE Data. For functional classification
of the identified genes in AML, we used EASE (version 2.0) software
(http:��david.niaid.nih.gov�david�ease.htm) for gene ontology
analysis. EASE performs a statistical analysis of gene categories in
the gene list to find those that are the most overrepresented either
because of under- or overexpression. This allows us to define the
‘‘biological process’’ for the analyzed genes.
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