Perspectives on Existing Genetic Variation Resources From a Clinical Lab Director

Elaine Lyon, Ph.D., FACMG
Associate Professor of Pathology
University of Utah
Medical Director, Genetics Division
ARUP Laboratories
Levels of Analysis

Levels of Analysis

- **Targeted exons**
 - MEN2
- **Single gene**
 - CFTR, F8, Beta globin
- **Gene panels**
 - Cancer syndromes, cardiomyopathies, hearing loss, mitochondrial,
- **Exome/genome level**

Regions Interrogated

- **Exons**
- **Intron/exon boundaries**
- **Known intronic mutations**
- **Gene regulatory elements**
 - 5’ region, promoter
 - 3’ UTR
ACMG Recommendations

• Report clinical significance
 – “... the laboratory must provide the interpretive information and a best estimate of clinical significance for the variants....”

Mutation Classifications

- Previously reported
 - Pathogenic vs Benign
 - Autosomal vs X-linked
 - Recessive vs Dominant

- Previously unreported
 - Expected pathogenic
 - Suspected pathogenic
 - Uncertain
 - Suspected benign

- Further classification
 - Severe, moderate, mild, very mild
Mutation Classification

- Check internal database
 - Differences between labs
- Locus-specific databases
 - Difference between databases, evidences given, updates, standards for classifications
 - Check original sources
- dbSNP, frequency (gene centric)
 - Benign and pathogenic mutations included
- Prediction algorithms (Polyphen-2, Sift, others)
 - no composite
- Literature search/ Google
- PROBLEM: Don’t know when to stop / what we’ve missed
Evidences

- Phenotype/Genotype
 - Cases/symptoms
 - Normal controls
- Functional studies
- Amino acid severity/splice predictors
- Conservation over species/gene families
- Co-occurrence with causative mutations
 - Recessive vs dominant diseases
 - Chromosome phase
- Genetic evidence/Family concordance
 - Large family
 - Multiple small families
Collecting Evidences

- Testing additional family members
 - De novo
 - Linkage analysis
- Indirect measures (prediction programs)

Courtesy of David Crockett, PhD
Collecting Evidences

- Functional evidence
 - Histopathology
 - IHC
 - PMS2
 - Enzymatic/pathway analysis
 - MCAD: acylcarnitines
 - OCTN2: transport activity (fibroblasts); mutant expression
 - Structural analysis
 - RNA

PMS2 Uncertain Variant

- c.137G>T; p.Ser46Ile
- c.137G>A; p.Ser46Asn
- Ohio State
 - 7 families – 1 bi-allelic
- ARUP
 - 4 families – 1 bi-allelic
 - PMS2 absent by IHC
 - MSI High

Pedigree from Leigha Senter-Jamieson, Ohio State University
Further Evidences

- AA predictions
- PolyPhen: Probably damaging (most severe class)
- Pmut: Benign, Reliability = 4 (of 10)
- PhD-SNP: Disease causing, Reliability Index = 8 (of 10)
- nsSNPAnalyzer: Disease causing
- AlignGVGD: class C65 mutation (most likely class to interfere with function)
- Conserved, but not strongly
- Not seen in 182 control chromosomes
- Western blot showed 50% protein compared to control
- Haploid-converted clones showed expression from only 1 allele

Nakagawa H et al. CANCER RESEARCH 64, 4721–4727, 2004
Laboratories Collecting Information

- **Patient Clinical History**
 - Symptoms
 - Family history
 - Previous lab results

- **Molecular Results**
 - Sequence variants
 - Common polymorphisms
 - Deletion/duplication analysis

- **Re-classify variants**
 - Variants of Uncertain Significance (VUS) to Benign, Pathogenic
Ideal Clinically Valid Genome Database

- **Variants**
 - Pathogenic, Uncertain, Benign
 - Severities, if known
 - Ethnicities/Frequencies
 - Number of cases (not necessarily multiple entries/variant)
 - Symptoms
 - In conjunction with other mutations

- **Evidences**
 - Not weighted equally
 - Risks of incorrect classification not equal between genes
 - Do not over-simplify

- **Reasonable submission**