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DNA demethylation occurs in a replication-dependent
manner if DNMT1 is prevented from remethylating
cytosine in the newly replicated strand
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5hmC is highest in gene bodies of the most highly transcribed genes,
and at active enhancers (H3K4mel*, H3K27Ac*)

5hmC enrichment
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TETZ deletions and mutations are frequently associated with haematologic malignancies
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TET2 mutations are loss-of-function

Ko*, Pape*, Huang™ et al., Nature 2010




Loss of 5-hydroxymethylcytosine is accompanied
with malignant cellular transformation
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Is acute loss of TET function associated with cancer? VYes

Two model systems in mice:

- deletion of Tet2 and Tet3 with Mx1Cre and polyI:polyC injection,
or with Cre-ERT2 and tamoxifen injection
effects of deletion first seen in haematopoietic stem/precursor cells
- aggressive myeloid leukemia

- deletion of Tet2 and Tet3 with CD4Cre in T cells
- aggressive antigen-driven T cell leukemia

Both: cell-intrinsic, polyclonal, transmissible indefinitely to recipient mice
Cancer develops rapidly ( < 5 weeks)



WGBS of WT and Tet2/3 DKO LSK haematopoietic stem/ precursor cells

Sequencing results Covered basepairs = mapped reads x length of reads
mm9 Genome size = 2,725,765,481
Total Number of Genome Genome Coverage
Reads Mapped Reads (%) Covered Basepairs Coverage per Condition
Ctrl 215,810,374 197,201,739 0.91 19,917,375,639 7.31
CONTROLS Ctr2 192,188,864 177,428,469 0.92 17,920,275,369 6.57 21 03
Ctr3 208,921,452 192,865,014 0.92 19,479,366,414 7.15
KO1 217,675,274 201,809,518 0.93 20,382,761,318 7.48 21 98
KNOCKOUTS KO2 230,150,082 211,497,322 0.92 21,361,229,522 7.84 .
KO3 193,437,008 179,920,060 0.93 18,171,926,060 6.67
a 1.0 - : b 0.6 i c 1.0 1
I : B
0.8 4 i 0.5 ] 5 084
: =]
064 /i 041\ | g 06- '
o 1 I 0 :
o i o 0.3 i o i .
=045 i Replicates - ' = 04- | Replicales
i - 0.2+ i - ] Hn=1
: mn=1 ; g : Wmn=2
0211 i an- 0.4+ 3 021 E mn=3
U N E D_ E U - I l: T T ] 1
Ox Sx 10x 15x 20x 25x 30x Ox 5x 10x 15x 20x 25x 30x Ox  20x 40x 60« 80x 100x
Coverage Coverage Total coverage per sample group
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FDR = False Discovery Rate (specificity) = refPositives Ziller et al. (2014)



Narrowing of “canyons” of DNA methylation in Tet2/3 DKO cells
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TET loss-of-function results in increased DNA methylation across the genome

TSS and gene body methylation
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Increased DNA methylation in both classes of differentially-expressed genes

(plotted as averages across all genes)
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Increased DNA methylation in both up- and down-regulated genes
(plotted at the single-gene level)

Methylation change in differentially expressed genes (721 up, 290 down)
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Bisulfite sequencing conflates five bases into just two

Approximate numbers of

modified cytosines ~30 x 106 Read as bmC
in the mouse ES cell genome
/7' oMC =7 \
DNMT 5hmC ~6 x 10°
~600 X 105 C <+ ~wenr - B TET
/? ., j
- 5fC ~60,000
Read as C " 5caCe— TET
1000-10,000




Recommendations - 1

1. Include oxi-mC (or at least 5hmC) mapping in DNA methylation analysis

DNA methylation is not binary as previously thought:
5mC can be 5hmC; C can be 5fC or 5caC

Also, a 20% change in methylation level using bisulphite sequencing means that
20% of alleles have likely undergone a change in modification status

and some undefined proportion have changed state, from 5mC to 5hmC or vice versa,
but have not been counted

2. Include perturbations and kinetic measurements
DNMTs and TETs are clearly sensitive to environment and metabolism

Changes may happen on very rapid timescales, as seen in these cancers

3. Encourage the development of new sequencing methods to map all modified cytosines
in unamplified genomic DNA

8 bases altogether: A, G, T + 5 cytosine species: C, 5bmC, 5hmC, 5fC, bcaC
Ideally, long reads (10 kb) to allow unambiguous mapping of repetitive DNA




Recommendations - 2

1. Shift some attention to purified primary cells, not just tissues or cell lines!

Cells examined ex vivo or in situ can be very different from cultured cells,
established cell lines, or even primary cells cultured for just a few days in vitro

2. Corollary: enable technologies for looking at single cells or small numbers of cells
preferably isolated ex vivo

e.g. exhausted T cells in mouse models or from humans are available as thousands, not millions

All the technologies: histone modifications, ChIP-seq, DNA modification mapping

3. Take-home message: model organisms are likely to be quite useful, even to
a National "Human” Genome Research Institute
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