Building Genomic Medicine Capability

Challenges and opportunities of big data

Andy Futreal
MD Anderson Cancer Center
Personalised medicine will enable the much needed paradigm shift in clinical care delivery, but we will need appropriate tools & know-how to realize the model and implement the vision.

→ How to accelerate this paradigm?
• The selected cancers are:
 • **Triple Negative Breast Cancer**
 • **High-grade Serous Ovarian Cancer**
 • **Leukemia (AML/MDS)**
 • **Leukemia (CLL)**
 • **Lung**
 • **Melanoma**
 • **Prostate**

• Focus on patient impact and reduction in mortality world-wide
• Comprehensive, spanning the cancer care continuum
• Collaborative, internal and external
• Innovative, in organizational constructs and technology
Moonshot Platforms

- Center for Co-clinical trials
- Institute for Personalised Cancer therapy
- Cancer Control
- Early detection/Diagnostics
- Clinical Genomics
- Immunology
- Institute for Applied Cancer Sciences
- Translational Research Continuum
- Research Genomics/Informatics
- Big Data
- Adaptive Learning
Adaptive Learning in Genomic Medicine

Clinical information and tests

Consent, Biospecimen Collection, QC, Banking, Biomolecule Processing

Integrated Patient Data Warehouse

Big-Data Analytics

Research Data:
- Omic profiling
- Systems Pharm
- Preclinical Rx- TRC

TCGA/ICGC
- Pubmed
- Patent db
- Social media
- Other

Decision Support

Research & Operations

Big Data Environment
Big (well, it is Texas after all) Data Analytics

Longitudinal Patient Data Warehouse

Clinical & Genomic Data

Massive Data Analytics

Research & Development
Support and enable research

Operation Efficiency
Efficacy/Efficiency/Cost analyses

Clinical Decision Support
IBM-Watson Cohort design

Knowledge Base:
End user interface with understandable & actionable data

Clinicians
Researchers
Bioinformaticians
Leukemia Project

• 1000 leukemia patients by fall 2013– MDS/AML/CLL focus
• Focused on but not limited to newly diagnosed patients
• Samples taken at diagnoses/presentation and thereafter at each patient visit.
• Saliva/buccal for normal, bone marrow and/or peripheral blood
• Bone marrow/bloods accessed in context of normal clinical workup/care
• All samples collected and held in CLIA compliant chain of custody
Leukemia Project

- Exome sequencing, low-pass WGS
- Data generated on normal/tumor (presentation) and from relapse sample(s)
- All clinical data currently collected in Departmental database plus extraction from patient records
- A few early potential questions –
 - MDS to AML progression
 - risk of death during induction chemotherapy
 - subclonality and risk of relapse/progression
• Other Opportunities (some of them)

 – Genetic/genomic heterogeneity

 – Comprehensive cancer patient genomics –
 • Interplay of germline and somatic genomics in the same patient

 – Impact of genomics on outcomes
 • adverse events
 • survivorship
Genetic heterogeneity is a key determinate of variation in outcomes

- What are the cancer genes operative?
- What is the level of intra-tumor heterogeneity?

- What are the germline/somatic sequence variants that are influencing factors including:
 - Drug metabolism
 - Immune response
 - Cancer susceptibility
 - Toxicity

- How do these factors interact and influence outcomes?
Comprehensive Cancer Patient genomics
a tale of (at least!) two genomes

- Risk and response to exposure: Tobacco, UV radiation, diet, stress
- Treatment: Response, acute toxicity, resistance
- Survivorship: Long term toxicity, recurrence, second primary cancers
Adaptive Learning/Leukemia Team

Lynda Chin
John Frenzel
Keith Perry
Brett Smith

Craig Owen
Brian Lari
John Zhang
Alexei Protopopov

Hagop Kantarjian
Guillermo Garcia-Manero
Michael Keating
Bill Wierda

Raja Luthra
Steve Kornblau