April 14, 2003

“The completion of the Human Genome Project should not be viewed as an end in itself.... it marks the start of the era of the genome in medicine and health...we urge all scientists and people around the globe to join us in turning this vision into reality.”

-- Francis Collins --
Ten Years Later: Major Advances in Genomics and Medicine

- Sequencing – rare and undiagnosed disease
- Family history and risk assessment tools
- Cancer prognosis, diagnosis and risk assessment
- Pharmacogenomics (germ-line, cancer)
- Targeted therapies (cancer, CF, other diseases)
Over 120 FDA Drug Labels Have Genomics ...(seldom used)

Table of Pharmacogenomic Biomarkers in Drug Labels

Pharmacogenomics can play an important role in identifying responders and non-responders to medications, avoiding adverse events, and optimizing drug dose. Drug labels may contain information on genomic biomarkers and can describe:
- Drug exposure and clinical response variability
- Risk for adverse events
- Genotype-specific dosing
- Mechanisms of drug action
- Polymorphic drug target and disposition genes

The table below lists FDA-approved drugs with pharmacogenomic information in their labels. Some, but not all, of the labels include specific actions to be taken based on genetic information. Relevant sections of the label with such information are noted in the last column of the table. Biomarkers may include gene variants, functional deficiencies, expression changes, chromosomal abnormalities, and others. Microbial variants that influence sensitivity to anti-infectives are not included in the table. Please note that the table columns can be sorted.

Pharmacogenomic information can appear in different sections of the label. For more information on the relevance of information in various parts of the drug label (e.g., Indications and Usage, Dosage and Administration, Boxed Warning, etc.), please go to the relevant labeling guidance. For information on the FDA's initiative to improve prescription drug labels, visit the FDA/CDER Learn website.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Therapeutic Area</th>
<th>Biomarkers</th>
<th>Label Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abacavir</td>
<td>Antivirals</td>
<td>HLA-B*5701</td>
<td>Boxed Warning, Contraindications, Warnings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and Precautions, Patient Counseling Information</td>
</tr>
<tr>
<td>Aripiprazole</td>
<td>Psychiatry</td>
<td>CYP205</td>
<td>Clinical Pharmacology, Dosage and Administration</td>
</tr>
</tbody>
</table>
Major Questions for Genomic Medicine

• How to develop evidence of benefit/value and what evidence is needed?
• How to engage institutional leadership and physicians
• How to educate patients, physicians, public
• How to achieve full EMR integration of genomic results, custom reporting tools and decision support software
• How to create a viable financial model -- not by adding costs but by reducing costs

Source: Manolio et al GIM 2013
Global Attendance – We Are Grateful

50 International Genomic Medicine Leaders

25 Countries
The International Landscape

<table>
<thead>
<tr>
<th>Clinical Genomic Capability</th>
<th>Today (%)</th>
<th>Desired in 3-5 years (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not at all</td>
<td>Specialized Centers</td>
</tr>
<tr>
<td>Pharmacogenomics</td>
<td>23</td>
<td>66</td>
</tr>
<tr>
<td>Germline sequencing</td>
<td>23</td>
<td>66</td>
</tr>
<tr>
<td>Tumor sequencing</td>
<td>17</td>
<td>72</td>
</tr>
<tr>
<td>Newborn sequencing</td>
<td>64</td>
<td>36</td>
</tr>
<tr>
<td>Maternal fetal sequencing</td>
<td>29</td>
<td>65</td>
</tr>
<tr>
<td>Rare disease diagnosis</td>
<td>23</td>
<td>71</td>
</tr>
<tr>
<td>Sequencing for identification of infectious agents</td>
<td>17</td>
<td>72</td>
</tr>
<tr>
<td>RNA profiling</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Metabolomics</td>
<td>53</td>
<td>47</td>
</tr>
<tr>
<td>Proteomics</td>
<td>64</td>
<td>36</td>
</tr>
<tr>
<td>Systematic family history</td>
<td>17</td>
<td>36</td>
</tr>
<tr>
<td>Genetic counselors</td>
<td>23</td>
<td>47</td>
</tr>
<tr>
<td>Electronic medical record</td>
<td>23</td>
<td>47</td>
</tr>
<tr>
<td>Clinical decision</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>
Global Grand Challenges for Genomic Medicine

- Evidence of efficacy or effectiveness
- Lack of Reimbursement
- Evidentiary thresholds
- Bioinformatics and EMR infrastructure
- Access to POC education and CDS
- Expertise and training programs
- Where to invest?
Possible Outcomes

• An international steering group
 – Develop a collective agenda to enable genomic medicine implementation

• Working groups
 – develop and implement key components of such an agenda

• International collaborations or pilot projects

• Others?
Global Leaders in Genomic Medicine: Agenda

- General Overview of Genomic Medicine in US
- International Genomic Medicine Applications and Initiatives
- Panel Discussion on International Implementation of Genomic Medicine
- International Genomic Medicine Applications and Initiatives (con’t)
- Three NIH initiatives
- Smithsonian exhibit – educational initiatives for the public
- Breakout sessions on 5 topics
 - IT/Bioinformatics
 - Education and Workforce Building
 - Evidence Generation
 - Pharmacogenomics
 - Policy
- Report out – Action oriented
- Next Steps
Meeting Objectives

• Identify areas of active translation and implementation
• Prioritize common barriers to implementation in healthcare
• Frame a policy agenda to advance the field
• Highlight nations with unique capabilities
• Discuss opportunities for international collaborations
Introductions
Thank you

• Rita Chambers – Duke University
• Teji Rakhra-Burris – Duke University
• Maggie Bartlett – NHGRI
• Shane Clark – NHGRI
• Alvaro Encinas - NHGRI
• Allison Mandich - NHGRI
• Jackie Odgis – NHGRI
• Tonia Dickerson - IOM
• Patsy Powell – IOM
Francis Collins MD PhD